Skip to main content
Log in

Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Localized surface plasmon resonance (LSPR) excitation in silver and gold nanoparticles produces strong extinction and scattering spectra that in recent years have been used for important sensing and spectroscopy applications. This article describes the fabrication, characterization, and computational electrodynamics of plasmonic materials that take advantage of this concept.Two applications of these plasmonic materials are presented: (1) the development of an ultrasensitive nanoscale optical biosensor based on LSPR wavelength-shift spectroscopy and (2) the use of plasmon-sampled and wavelength-scanned surface-enhanced Raman excitation spectroscopy (SERES) to provide new insight into the electromagnetic-field enhancement mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W.L. Barnes, A. Dereux, and T.W. Ebbesen, Nature 424 (2003) p. 824.

    Google Scholar 

  2. C.L. Haynes, A.D. McFarland, L. Zhao, R.P. Van Duyne, G.C. Schatz, L. Gunnarsson, J. Prikulis, B. Kasemo, and M. Käll, J. Phys. Chem. B 107 (2003) p. 7337.

    Google Scholar 

  3. S.A. Maier, P.G. Kik, H.A. Atwater, S. Meltzer, E. Harel, B.E. Koel, and A.A.G. Requicha, Nature Mater. 2 (2003) p. 229.

    Google Scholar 

  4. C.L. Haynes and R.P. Van Duyne, Nano Lett. 3 (2003) p. 939.

    Google Scholar 

  5. H.J. Lezec, A. Degiron, E. Devaux, R.A. Linke, L. Martin-Moreno, F.J. Garcia-Vidal, T.W. Ebbesen, Science 297 (2002) p. 820.

    Google Scholar 

  6. L.H. Smith, J.A.E. Wasey, and W.L. Barnes, Appl. Phys. Lett. 84 (2004) p. 2986.

    Google Scholar 

  7. S. Wedge, J.A.E. Wasey, W.L. Barnes, and I. Sage, Appl. Phys. Lett. 85 (2004) p. 182.

    Google Scholar 

  8. P. Andrew and W.L. Barnes, Science 306 (2004) p. 1002.

    Google Scholar 

  9. R.P. Van Duyne, Science 306 (2004) p. 985.

    Google Scholar 

  10. B. Pettinger, B. Ren, G. Picardi, R. Schuster, and G. Ertl, Phys. Rev. Lett. 92 096101 (2004).

    Google Scholar 

  11. G.C. Schatz and R.P. Van Duyne, in Handbook of Vibrational Spectroscopy, Vol. 1 (Wiley, New York, 2002) p. 759.

    Google Scholar 

  12. A.J. Haes and R.P. Van Duyne, Anal. Bioanal. Chem. 379 (2004) p. 920.

    Google Scholar 

  13. J.M. Brockman, B.P. Nelson, and R.M. Corn, Ann. Rev. Phys. Chem. 51 (2000) p. 41.

    Google Scholar 

  14. W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4 (2004) p. 1085.

    Google Scholar 

  15. J.C. Hulteen and R.P. Van Duyne, J. Vac. Sci. Technol., A 13 (1995) p. 1553.

    Google Scholar 

  16. L.A. Dick, A.D. McFarland, C.L. Haynes, and R.P. Van Duyne, J. Phys. Chem. B 106 (2002) p. 853.

    Google Scholar 

  17. M. Litorja, C.L. Haynes, A.J. Haes, T.R. Jensen, and R.P. Van Duyne, J. Phys. Chem. B 105 (2001) p. 6907.

    Google Scholar 

  18. T.R. Jensen, M. Duval Malinsky, C.L. Haynes, and R.P. Van Duyne, J. Phys. Chem. B 104 (2000) p. 10549.

    Google Scholar 

  19. T.R. Jensen, R.P. Van Duyne, S.A. Johnson, and V.A. Maroni, Appl. Spectrosc. 54 (2000) p. 371.

    Google Scholar 

  20. A.M. Michaels, M. Nirmal, and L.E. Brus, J. Am. Chem. Soc. 121 (1999) p. 9932.

    Google Scholar 

  21. S. Schultz, D.R. Smith, J.J. Mock, and D.A. Schultz, Proc. Natl. Acad. Sci. U.S.A. 97 (2000) p. 996.

    Google Scholar 

  22. J. Yguerabide and E.E. Yguerabide, Anal. Biochem. 262 (1998) p. 157.

    Google Scholar 

  23. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 (Springer-Verlag, Heidelberg, Germany, 1995).

    Google Scholar 

  24. C.L. Haynes and R.P. Van Duyne, J. Phys. Chem. B 105 (2001) p. 5599.

    Google Scholar 

  25. B.T. Draine and J.J. Goodman, Astrophys. J. 405 (1993) p. 685.

    Google Scholar 

  26. B.T. Draine and P.J. Flatau, J. Opt. Soc. Am. A 11 (1994) p. 1491.

    Google Scholar 

  27. W.-H. Yang, G.C. Schatz, and R.P. Va n Duyne, J. Chem. Phys. 103 (1995) p. 869.

    Google Scholar 

  28. T.R. Jensen, M.L. Duval, L. Kelly, A. Lazarides, G.C. Schatz, and R.P. Van Duyne, J. Phys. Chem. B 103 (1999) p. 9846.

    Google Scholar 

  29. M. Duval Malinsky, L. Kelly, G.C. Schatz, and R.P. Van Duyne, J. Am. Chem. Soc. 123 (2001) p. 1471.

    Google Scholar 

  30. A.J. Haes, S. Zou, G.C. Schatz, and R.P. Van Duyne, J. Phys. Chem. B 108 (2004) p. 6961.

    Google Scholar 

  31. L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, and S.S. Yee, Langmuir 14 (1998) p. 5636.

    Google Scholar 

  32. A.D. McFarland and R.P. Van Duyne, Nano Lett. 3 (2003) p. 1057.

    Google Scholar 

  33. A.J. Haes, S. Zou, G.C. Schatz, and R.P. Va n Duyne, J. Phys. Chem. B 108 (2004) p. 109.

    Google Scholar 

  34. A.J. Haes and R.P Van Duyne, J. Am. Chem. Soc. 124 (2002) p. 10596.

    Google Scholar 

  35. J.C. Riboh, A.J. Haes, A.D. McFarland, C.R. Yonzon, and R.P. Van Duyne, J. Phys. Chem. B 107 (2003) p. 1772.

    Google Scholar 

  36. C.R. Yonzon, E. Jeoung, S. Zou, G.C. Schatz, M. Mrksich, and R.P. Van Duyne, J. Am. Chem. Soc. 126 (2004) p. 12669.

    Google Scholar 

  37. A.J. Haes, W.P. Hall, L. Chang, W.L. Klein, and R.P. Van Duyne, Nano Lett. 4 (2004) p. 1029.

    Google Scholar 

  38. A.J. Haes, L. Chang, W.L. Klein, and R.P. Van Duyne, J. Am. Chem. Soc. 127 (2005) p. 2264.

    Google Scholar 

  39. G. Raschke, S. Kowarik, T. Franzl, C. Soennichsen, T.A. Klar, J. Feldmann, A. Nichtl, and K. Kuerzinger, Nano Lett. 3 (2003) p. 935.

    Google Scholar 

  40. R.P. Van Duyne, A.J. Haes, and A.D. McFarland, Proc. SPIE–The International Society for Optical Engineering 5223 (2003) p. 197.

    Google Scholar 

  41. D.L. Jeanmaire and R.P. Van Duyne, J. Electroanal. Chem. 84 (1977) p. 1.

    Google Scholar 

  42. C.L. Haynes and R.P. Van Duyne, J. Phys. Chem. B 107 (2003) p. 7426.

    Google Scholar 

  43. S. Nie and S.R. Emory, Science 275 (1997) p. 1102.

    Google Scholar 

  44. K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, and M.S. Feld, Phys. Rev. Lett. 78 (1997) p. 1667.

    Google Scholar 

  45. P.F. Liao, J.G. Bergman, D.S. Chemla, A. Wokaun, J. Melngailis, A.M. Hawryluk, and N.P. Economou, Chem. Phys. Lett. 81 (1981) p. 355.

    Google Scholar 

  46. R.E. Howard, P.F. Liao, W.J. Skocpol, L.D. Jackel, and H.G. Craighead, Science 221 (1983) p. 117.

    Google Scholar 

  47. N. Felidj, S.L. Truong, J. Aubard, G. Levi, J.R. Krenn, A. Hohenau, A. Leitner, and F.R. Aussenegg, J. Chem. Phys. 120 (2004) p. 7141.

    Google Scholar 

  48. A.D. McFarland, “Using Nanoparticle Optics for Ultrasensitive Chemical Detection and Surface-Enhanced Spectroscopy,” PhD thesis, Northwestern University, 2004.

  49. A.D. McFarland, M.A. Young, J.A. Dieringer, and R.P. Van Duyne, J. Phys. Chem. B 109 (2005) accepted.

  50. E. Hao and G.C. Schatz, J. Chem. Phys. 120 (2004) p. 357.

    Google Scholar 

  51. S. Zou, N. Janel, and G.C. Schatz, J. Chem. Phys. 120 (2004) p. 10871.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haes, A.J., Haynes, C.L., McFarland, A.D. et al. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bulletin 30, 368–375 (2005). https://doi.org/10.1557/mrs2005.100

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2005.100

Keywords

Navigation