Skip to main content
Log in

Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Phase-change nonvolatile semiconductor memory technology is based on an electrically initiated, reversible rapid amorphous-to-crystalline phase-change process in multicomponent chalcogenide alloy materials similar to those used in rewriteable optical disks. Long cycle life, low programming energy, and excellent scaling characteristics are advantages that make phase-change semiconductor memory a promising candidate to replace flash memory in future applications. Phase-change technology is being commercialized by a number of semiconductor manufacturers. Fundamental processes in phase-change semiconductor memory devices, device performance characteristics, and progress toward commercialization of the technology are reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.R. Ovshinsky Phys. Rev. Lett. 21 (1968) p. 1450.

    Article  Google Scholar 

  2. J. Feinleib J. de Neufville, S.C. Moss and S.R. Ovshinsky Appl. Phys. Lett. 18 (1971) p. 254.

    Article  CAS  Google Scholar 

  3. H. Fritzsche Annu. Rev. Mater. Sci. 2 (1972) p. 697.

    Article  CAS  Google Scholar 

  4. D. Adler Scientific American 236 (36)(1977).

  5. M. Takenaga N. Yamada S. Ohara K. Nishiuchi M. Nagashima T. Kashihara S. Nakamura and T. Yashimata in Proc. SPIE 420 (SPIE-The International Society for Optical Engineering, Bellingham, WA, 1983) p. 173.

    Google Scholar 

  6. R.G. Neale D.L. Nelson and G.E. Moore Electronics (September 1970) p. 56.

    Google Scholar 

  7. M. Chen K. Rubin and R. Barton Appl. Phys. Lett. 49 (1986) p. 502.

    Article  CAS  Google Scholar 

  8. M. Terao T. Nishida Y. Miyauchi S. Horiguchi T. Kaku and N. Ohta in Proc. SPIE 695 (SPIE-The International Society for Optical Engineering, Bellingham, WA, 1986) p. 105.

    Google Scholar 

  9. N. Akahira N. Yamada K. Kimura and M. Takao in Proc. SPIE 899 (SPIE-The International Society for Optical Engineering, Bellingham, WA, 1988) p. 188.

    Google Scholar 

  10. T. Ohta K. Inoue M. Uchida K. Yoshida T. Akiyama S. Furakawa K. Nagata and S. Nakamura Proc. Int. Symp. Optical Memory (Kobe, Japan), 1989); T. Ohta, K. Inoue, M. Uchida, K. Yoshida, T. Akiyama, S. Furakawa, K. Nagata, and S. Nakamura, Jpn. J. Appl. Phys. 28, Suppl. 28-3 (1989) p. 123.

    Google Scholar 

  11. J. Gonzalez-Hernandez, B.S. Chao D. Strand S.R. Ovshinsky D. Pawlik and P. Gasiorowski Appl. Phys. Comm. 11 (4)(1992) p. 557.

    CAS  Google Scholar 

  12. S.R. Ovshinsky S.J. Hudgens W. Czubatyj D.A. Strand and G.C. Wicker “Electrically erasable phase change memory,” U.S. Patent No. 5,166,758 (November 24, 1992).

    Google Scholar 

  13. G. Wicker “A Comprehensive Model of Submicron Chalcogenide Switching Devices,” PhD dissertation, Wayne State University, Detroit, Mich. (1996).

    Google Scholar 

  14. S.R. Ovshinsky IEEE Proc. CAS 1 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 1998) p. 33.

    Google Scholar 

  15. G. Wicker in Proc. SPIE Conf. Electronics and Structures for MEMS, Vol. 3891 (SPIE-The International International Society for Optical Engineering, Bellingham, WA, 1999) p. 2.

    Article  CAS  Google Scholar 

  16. M. Okuda H. Naito and T. Matsushita in Proc. Int. Symp. Optical Memory (1991) p. 73.

    Google Scholar 

  17. J.H. Coombs A.P.J. Jongenelis W. van Es-Spiekman, and B.A.J. Jacobs J. Appl. Phys. 78 (1995) p. 4906 and p. 4918.

    Article  CAS  Google Scholar 

  18. S. Lai and T. Lowrey in 2001 IEDM Tech. Dig. Int. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2001) p. 36.5.1.

    Google Scholar 

  19. N.F. Mott and E.A. David Electronic Processes in Non-Crystalline Materials (Oxford University Press, 1971).

    Google Scholar 

  20. M.H. Cohen H. Fritzsche and S.R. Ovshinsky Phys. Rev. Lett. 22 (1969) p. 1065.

    Article  CAS  Google Scholar 

  21. M. Kastner D. Adler and H. Fritzsche Phys. Rev. Lett. 37 (1976) p. 1504.

    Article  CAS  Google Scholar 

  22. A. Pirovano A. Lacaita A. Benvenuti F. Pellizzer and R. Bez IEEE Trans. Electron. Dev. 51 (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2004) p. 452.

    Article  Google Scholar 

  23. D.K. Reinhard F.O. Arntz and D. Adler Appl. Phys. Lett. 23 (1973) p. 521.

    Article  CAS  Google Scholar 

  24. A.R. Regel A.A. Andreev and M. Mamadaliev J. Non-Cryst. Solids 8-10 (1972) p. 455.

    Article  CAS  Google Scholar 

  25. D. Adler M.S. Shur M. Silver and S.R. Ovshinsky J. Appl. Phys. 51 (1980) p. 3289.

    Article  CAS  Google Scholar 

  26. J. Maimon K. Hunt J. Rogers L. Burcin and K. Knowles Proc. NVTMS Conf. (2002).

    Google Scholar 

  27. M. Gill T. Lowrey and J. Park in ISSCC 2002 Tech. Dig. (2002) paper No. 12.4.

    Google Scholar 

  28. F. Pellizzer A. Pirovano F. Ottogalli M. Magistretti M. Scaravaggi P. Zuliani M. Tosi A. Benvenuti P. Besana S. Cadeo T. Marangon R. Morandi R. Piva A. Spandre R. Zonca A. Modelli E. Varesi T. Lowrey A. Lacaita G. Casagrande P. Cappelleti and R. Bez in 2004 Symp. on VLSI Technol. Dig. Tech. Papers (2004) p. 18.

    Book  Google Scholar 

  29. S.H. Lee Y.N. Hwang S.Y. Lee K.C. Ryoo S.J. Ahn H.C. Koo C.W. Jeong Y.T. Kim G.H. Koh G.T. Jeong H.S. Jeong and K. Kim in 2004 Symp. on VLSI Technol. Dig. Tech. Papers (2004) p. 20.

    Book  Google Scholar 

  30. S. Privitera C. Bongiorno E. Rimini R. Zonca A. Pirovano and R. Bez in Advanced Data Storage Materials and Characterization Techniques, edited by J.W. Ahner J. Levy L. Hesselink and A. Mijiritskii (Mater. Res. Soc. Symp. Proc. 803, Warrendale, PA), 2004) p. 83.

    Google Scholar 

  31. T.A. Lowrey S.J. Hudgens W. Czubatyj C.H. Dennison S.A. Kostylev and G.C. Wicker in Advanced Data Storage Materials and Characterization Techniques, edited by J.W. Ahner J. Levy L. Hesselink and A. Mijiritskii (Mater. Res. Soc. Symp. Proc. 803, Warrendale, PA), 2004) p. 101.

    Google Scholar 

  32. A. Pirovano A.L. Lacaita A. Benvenuti F. Pellizer S. Hudgens and R. Bez in 2003 IEDM Tech. Dig. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) paper No. 29.6.1.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudgens, S., Johnson, B. Overview of Phase-Change Chalcogenide Nonvolatile Memory Technology. MRS Bulletin 29, 829–832 (2004). https://doi.org/10.1557/mrs2004.236

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.236

Keywords

Navigation