Skip to main content
Log in

Current Status of Ferroelectric Random-Access Memory

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The current status of ferroelectric random-access memory (FeRAM) technology is reviewed in this article. Presented first is the status of conventional FeRAM, in which the memory cells are composed of ferroelectric capacitors to store the data and cell-selection transistors to access the selected capacitors. Discussed next are recent developments in the field. Pb(Zrx,Ti1–x)O3 (PZT) and SrBi2Ta2O9 (SBT) films are being used to produce 0.13 µm and 0.18 µm FeRAM cells, respectively, with a stacked capacitor configuration; these cells are easily embedded into logic circuits. A new class of FeRAM called 6T4C—containing static RAM (SRAM) cells composed of six transistors (6T) and four ferroelectric capacitors (4C)—has been commercially produced. This type of FeRAM features a nondestructive readout operation, unlimited read/write cycling, and a fast access time of less than 10 ns. Lastly, the status of field-effect-transistor (FET)-type FeRAM is reviewed, emphasizing that the data retention time of a ferroelectric-gate FET has been improved to more than a month in recent studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Masui, W. Yokozeki, M. Oura, T. Ninomiya, K. Mukaida, Y. Takayama and T. Teramoto Proc. IEEE Custom Integrated Circuits Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) p. 403.

    Google Scholar 

  2. K. Takahashi, B.-E. Park, K. Aizawa and H. Ishiwara Abs. Int. Conf. Solid State Devices and Materials, Tokyo, Paper No. D-1-2 (2004).

    Google Scholar 

  3. H. McAdams, R. Acklin, T. Blake, J. Fong, D. Liu, S. Madan, T. Moise, S. Natarajan, N. Qian, Y. Qui, J. Roscher, A. Seshadri, S. Summerfelt, X. Du, J. Eliason, W. Kraus, R. Lanham, F. Li, C. Pietrzyk and J. Rickes Symp. VLSI Circuits Dig. Tech. Papers (Kyoto, Japan), June 2003) p. 175.

    Google Scholar 

  4. Y.J. Song, H.J. Joo, N.W. Jang, H.H. Kim, J.H. Park, H.Y. Kang, S.Y. Lee and K. Kim Symp. VLSI Technologies Dig. Tech. Papers (Kyoto, Japan), June 2003) p. 169.

    Google Scholar 

  5. S. Shiratake, T. Miyakawa, Y. Takeuchi, R. Ogiwara, M. Kamoshida, K. Hoya, K. Oikawa, T. Ozaki, I. Kunishima, K. Yamakawa, S. Sugimoto, D. Takashima, H.O. Joachim, N. Rehm, J. Wohlfahrt, N. Nagel, G. Beitel, M. Jacob and T. Roehr Proc. IEEE Int. Solid-State Circuits Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2003) p. 282.

    Google Scholar 

  6. H. Kanaya, K. Tomioka, T. Matsushita, M. Omura, T. Ozaki, Y. Kumura, Y. Shimojo, T. Morimoto, O. Hidaka, S. Shuto, H. Koyama, Y. Yamada, K. Osari, N. Tokoh, F. Fujisaki, N. Iwabuchi, N. Yamaguchi, T. Watanabe, M. Yabuki, H. Shinomiya, N. Watanabe, E. Itoh, T. Tsuchiya, K. Yamakawa, K. Natori, S. Yamazaki, K. Nakazawa, D. Takashima, S. Shiratake, S. Ohtsuki, Y. Oowaki, I. Kunishima and A. Nitayama Symp. VLSI Technologies Dig. Tech. Papers (Honolulu, HI), June 2004) p. 150.

    Google Scholar 

  7. International Technology Roadmap for Semiconductors, 2003 Edition (ITRS) (Semiconductor Industry Association, San Jose, 2003).

  8. Y. Nagano, T. Mikawa, T. Kutsunai, S. Hayashi, T. Nasu, S. Natsume, T. Tatsunari, T. Ito, S. Goto, H. Yano, A. Noma, K. Nagahashi, T. Miki, M. Sakagami, Y. Izutsu, T. Nakakuma, H. Hirano, S. Iwanari, Y. Murakuki, K. Yamaoka, Y. Goho, Y. Judai, E. Fujii and K. Sato Symp. VLSI Technologies Dig. Tech. Papers (Kyoto, Japan), June 2003) p. 171.

    Google Scholar 

  9. K. Yamaoka, S. Iwanari, Y. Murakuki, H. Hirano, M. Sakagami, T. Nakakuma, T. Miki and Y. Gohou Proc. IEEE Int. Solid-State Circuits Conf. (Institute of Electrical and Electronics Engineers, Piscataway, NJ, 2004) p. 50.

    Google Scholar 

  10. S. Masui, T. Ninomiya, M. Oura, W. Yokozeki, K. Mukaida and S. Kawashima IEEE J. Solid-State Circuits 38 (2003) p. 715.

    Article  Google Scholar 

  11. I.M. Ross U.S. Patent No. 2,791,760 (1957).

  12. H. Ishiwara and B.-E. Park, in Ferroelectric Thin Films XI, edited by, D.Y. Kaufman, S. Hoffman-Elfert, S.R. Gilbert, S. Aggarwal and M. Shimizu (Mat. Res. Soc. Symp. Proc. 748, Warrendale, PA), 2003) p. 297.

    Google Scholar 

  13. Y. Fujimori, T. Nakamura and A. Kamisawa Jpn. J. Appl. Phys. 38 (1999) p. 2285.

    Article  CAS  Google Scholar 

  14. T. Li, S.T. Hsu, B.D. Ulrich, L. Stecker, D.R. Evans and J.J. Lee IEEE Electron. Dev. Lett. 23 (2002) p. 339.

    Article  CAS  Google Scholar 

  15. S. Sakai and R. Ilangovan IEEE Electron. Dev. Lett. 25 (2004) p. 369.

    Article  CAS  Google Scholar 

  16. E. Tokumitsu, G. Fujii and H. Ishiwara Appl. Phys. Lett. 75 (1999) p. 575.

    Article  CAS  Google Scholar 

  17. K-H. Kim, J-P. Han,, S-W. Jung, and T-P. Ma, IEEE Electron. Dev. Lett. 23 (2002) p. 82.

    Article  CAS  Google Scholar 

  18. B.-G. Yu,, I.-K. You,, W.-J. Lee,, S.-O. Ryu,, K.-D. Kim,, S.-M. Yoon,, S.-M. Cho,, N.-Y. Lee, and W.-C. Shin, J. Semicond. Tech. Sci. 2 (2002) p. 213.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arimoto, Y., Ishiwara, H. Current Status of Ferroelectric Random-Access Memory. MRS Bulletin 29, 823–828 (2004). https://doi.org/10.1557/mrs2004.235

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs2004.235

Keywords

Navigation