Skip to main content
Log in

Beyond bulk single crystals: A data format for all materials structure–property–processing relationships

  • Microstructure Informatics in Process–Structure–Property Relations
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Methods used in informatics require input data that are in a machine-readable, structured format. Materials data, in particular, can be exceedingly complex, so defining data formats to store any and all materials-related information is a daunting task. In this article, we discuss a hierarchical data structure used for storing materials data called the physical information file (PIF). The PIF is a flexible schema for storing the structure, processing history, and properties of materials, devices, and physical systems. In addition to a general discussion of the schema, we give examples of its use in representing complex materials systems. We also describe open-source tools that have been developed for building and reading files using the PIF schema.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. K.M. Tolle, D.S.W. Tansley, A.J.G. Hey, Proc. IEEE 99, 1334 (2011).

    Google Scholar 

  2. K. Rajan, Annu. Rev. Mater. Res. 45, 153 (2015).

    Google Scholar 

  3. K. Rajan, Mater. Today 8, 38 (2005).

  4. MathWorks MATLAB, http://www.mathworks.com/products/matlab.

  5. The R Project for Statistical Computing, https://www.r-project.org.

  6. Scikit-learn: Machine Learning in Python, http://www.scikit-learn.org.

  7. Apache Spark, http://spark.apache.org.

  8. Weka, http://www.cs.waikato.ac.nz/ml/weka.

  9. A. Frantzen, D. Sanders, J. Scheidtmann, U. Simon, W.F. Maier, QSAR Comb. Sci. 24, 22 (2005).

  10. Y. Xu, M. Yamazaki, P. Villars, Jpn. J. Appl. Phys. 50, 11RH02 (2011).

  11. “Materials Genome Initiative National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative” (National Science and Technology Council Committee on Technology Subcommittee on the Materials Genome Initiative, Washington, DC, 2014).

  12. A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, S. Cholia, D. Gunter, G. Ceder, K.A. Persson, APL Mater. 1, 011002 (2013).

  13. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, M. Buongiorno-Nardelli, N. Mingo, O. Levy, Comput. Mater. Sci. 58, 227 (2012).

  14. J.E. Saal, S. Kirklin, M. Aykol, B. Meredig, C. Wolverton, JOM 65, 1501 (2013).

  15. S.R. Hall, B. McMahon, Eds., International Tables for Crystallography Volume G: Definition and Exchange of Crystallographic Data (Springer, Dordrecht, 2005).

  16. J.A. Warren, R.F. Boisvert, Building the Materials Innovation Infrastructure: Data and Standards (NISTIR 7898, National Institute of Standards and Technology, 2012).

  17. C.H. Ward, J.A. Warren, Materials Genome Initiative: Materials Data (NISTIR 8038, National Institute of Standards and Technology, 2015).

  18. National Institute of Standards and Technology, “NIST Materials Data Curation System,” https://mgi.nist.gov/materials-data-curation-system.

  19. P. Huck, A. Jain, D. Gunter, D. Winston, K. Persson, Comput. Sci. Softw. Eng. (2015), available at http://arxiv.org/abs/1510.05024.

  20. PIF Schema, http://www.citrine.io/pif.

  21. M.W. Gaultois, T.D. Sparks, C.K.H. Borg, R. Seshadri, W.D. Bonificio, D.R. Clarke, Chem. Mater. 25, 2911 (2013).

  22. S. Zhang, N. Sun, X. He, X. Lu, X. Zhang, J. Phys. Chem. Ref. Data 35, 1475 (2006).

  23. Pypif, http://www.citrine.io/pypif.

  24. Jpif, http://www.citrine.io/jpif.

  25. Github, https://www.github.com.

  26. Citrination, https://www.citrination.com.

  27. Pandas, http://pandas.pydata.org.

  28. Citrine Informatics, http://www.citrine.io.

  29. https://commons.wikimedia.org/wiki/File:Elmer-pump-heatequation.png.

  30. https://commons.wikimedia.org/wiki/File:BrittleAluminium320MPa_S-N_Curve.svg.

  31. https://commons.wikimedia.org/wiki/File:Microstructure_of_rolled_and_annealed_brass;_magnification_400X.jpg.

  32. https://commons.wikimedia.org/wiki/File:Grgr3d_small.gif.

  33. https://commons.wikimedia.org/wiki/File:Atomic_resolution_Au100.JPG.

  34. https://commons.wikimedia.org/wiki/File:Chalcopyrite-unit-cell-3D-balls.png.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyle Michel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Michel, K., Meredig, B. Beyond bulk single crystals: A data format for all materials structure–property–processing relationships. MRS Bulletin 41, 617–623 (2016). https://doi.org/10.1557/mrs.2016.166

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2016.166

Navigation