Skip to main content
Log in

Atom probe tomography of metallic nanostructures

  • Atom Probe Tomography
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article focuses on four topics that demonstrate the importance of atom probe tomography for obtaining nanostructural information that provides deep insights into the structures of metallic alloys, leading to a better understanding of their properties. First, we discuss the microstructure–coercivity relationship of Nd-Fe-B permanent magnets, essential for developing a higher coercivity magnet. Second, we address equilibrium segregation at grain boundaries with the aim of manipulating their interfacial structure, energies, compositions, and properties, thereby enabling beneficial material behavior. Third, recent progress in the search to extend the performance and practicality of the next generation of advanced high-strength steels is discussed. Finally, a study of the temporal evolution of a Ni-Al-Cr alloy through the stages of nucleation, growth, and coarsening (Ostwald ripening) and its relationship with the predictions of a model for quasi-stationary coarsening is described. This information is critical for understanding high-temperature mechanical properties of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. K. Hono, H. Sepehri-Amin, Scr. Mater. 67, 503 (2012).

    Article  Google Scholar 

  2. W.F. Li, T. Ohkubo, K. Hono, Acta Mater. 57, 1337 (2009).

    Article  CAS  Google Scholar 

  3. H. Sepehri-Amin, T. Ohkubo, T. Shima, K. Hono, Acta Mater. 60, 819 (2012).

    Article  CAS  Google Scholar 

  4. J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, T. Schrefl, K. Hono, Acta Mater. 61, 5387 (2013).

    Article  CAS  Google Scholar 

  5. H. Sepehri-Amin, T. Ohkubo, S. Nagashima, M. Yano, T. Shoji, A. Kato, T. Schrefl, K. Hono, Acta Mater. 61, 6622 (2013).

    Article  CAS  Google Scholar 

  6. T. Akiya, J. Liu, H. Sepehri-Amin, T. Ohkubo, K. Hioki, A. Hattori, K. Hono, Scr. Mater. 81, 48 (2014).

    Article  CAS  Google Scholar 

  7. B.W. Krakauer, D.N. Seidman, Acta Mater. 46, 6145 (1998).

    Article  Google Scholar 

  8. D.N. Seidman, Annu. Rev. Mater. Res. 37, 127 (2007).

    Article  CAS  Google Scholar 

  9. M. Herbig, D. Raabe, Y.J. Li, P.-P. Choi, S. Zaefferer, S. Goto, Phys. Rev. Lett. 112, 126103 (2014).

    Article  CAS  Google Scholar 

  10. M. Kuzmina, M. Herbig, D. Ponge, S. Sandlöbes, D. Raabe, Science 349, 1080 (2015).

    Article  CAS  Google Scholar 

  11. P.J. Felfer, T. Alam, S.P. Ringer, J.M. Cairney, Microsc. Res. Tech. 75, 484 (2012).

    Article  CAS  Google Scholar 

  12. B.W. Krakauer, J.G. Hu, S.M. Kuo, R.L. Mallick, A. Seki, D.N. Seidman, J.P. Baker, R.J. Loyd, Rev. Sci. Instrum. 61, 3390 (1990).

    Article  CAS  Google Scholar 

  13. D. Raabe, P.-P. Choi, Y.J. Li, A. Kostka, X. Sauvage, F. Lecouturier, K. Hono, R. Kirchheim, R. Pippan, D. Embury, MRS Bull. 35, 982 (2010).

    Article  CAS  Google Scholar 

  14. Y.J. Li, P.P. Choi, C. Borchers, S. Westerkamp, S. Goto, D. Raabe, R. Kirchheim, Acta Mater. 59, 3965 (2011).

    Article  CAS  Google Scholar 

  15. D. Raabe, M. Herbig, S. Sandlöbes, Y. Li, D. Tytko, M. Kuzmina, D. Ponge, P.-P. Choi, Curr. Opin. Solid State Mater. Sci. 18, 253 (2014).

    Article  CAS  Google Scholar 

  16. M. Kuzmina, D. Ponge, D. Raabe, Acta Mater. 86, 182 (2015).

    Article  CAS  Google Scholar 

  17. D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, P.-P. Choi, Acta Mater. 61, 6132 (2013).

    Article  CAS  Google Scholar 

  18. R. Kirchheim, Acta Mater. 55, 5129 (2007).

    Article  CAS  Google Scholar 

  19. A.J. Detor, C.A. Schuh, Acta Mater. 55, 4221 (2007).

    Article  CAS  Google Scholar 

  20. J. Weissmüller, W. Krauss, T. Haubold, R. Birringer, H. Gleiter, Nanostruct. Mater. 1, 439 (1992).

    Article  Google Scholar 

  21. Y.Z. Chen, A. Herz, Y.J. Li, C. Borchers, P.-P. Choi, D. Raabe, R. Kirchheim, Acta Mater. 61, 3172 (2013).

    Article  CAS  Google Scholar 

  22. Y.J. Li, D. Raabe, M. Herbig, P.-P. Choi, S. Goto, A. Kostka, H. Yarita, C. Borchers, R. Kirchheim, Phys. Rev. Lett. 113, 106104 (2014).

    Article  Google Scholar 

  23. M. Herbig, P. Choi, D. Raabe, Ultramicroscopy 153, 32 (2015).

    Article  CAS  Google Scholar 

  24. D. Tytko, P.-P. Choi, J. Klöwer, A. Kostka, G. Inden, D. Raabe, Acta Mater. 60, 1731 (2012).

    Article  CAS  Google Scholar 

  25. H.-W. Yen, S.W. Ooi, M. Eizadjou, A.J. Breen, C.-Y. Huang, H.K.D.H. Bhadeshia, S.P. Ringer, Acta Mater. 82, 100 (2015).

    Article  CAS  Google Scholar 

  26. B. Gault, M.P. Moody, J.M. Cairney, S.P. Ringer, Atom Probe Microscopy (Springer, New York, 2012).

    Book  Google Scholar 

  27. O. Bouaziz, S. Allain, C.P. Scott, P. Cugy, D. Barbier, Curr. Opin. Solid State Mater. Sci. 15, 141 (2011).

    Article  CAS  Google Scholar 

  28. P.W. Trimby, Ultramicroscopy 120, 16 (2012).

    Article  CAS  Google Scholar 

  29. B.C. De Cooman, K.G. Chin, J.Y. Kim, “High Mn TWIP Steels for Automotive Applications,” in New Trends and Developments in Automotive System Engineering, M. Chiaberge, Ed. (InTech, 2011), pp. 101 – 128.

  30. H. Luo, J. Shi, C. Wang, W. Cao, X. Sun, H. Dong, Acta Mater. 59, 4002 (2011).

    Article  CAS  Google Scholar 

  31. D.W. Suh, J.H. Ryu, M.S. Joo, H.S. Yang, K. Lee, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 44A, 286 (2013).

    Article  Google Scholar 

  32. B.C. De Cooman, P. Gibbs, S. Lee, D.K. Matlock, Metall. Mater. Trans. A 44A, 2563 (2013).

    Article  Google Scholar 

  33. J.O. Andersson, T. Helander, L.H. Hoglund, P.F. Shi, B. Sundman, Calphad 26, 273 (2002).

    Article  CAS  Google Scholar 

  34. C. Booth-Morrison, Y. Zhou, R.D. Noebe, D.N. Seidman, Philos. Mag. 90, 219 (2010).

    Article  CAS  Google Scholar 

  35. A.C. Lund, P.W. Voorhees, Acta Mater. 50, 2585 (2002).

    Article  CAS  Google Scholar 

  36. C. Booth-Morrison, J. Weninger, C.K. Sudbrack, Z. Mao, R.D. Noebe, D.N. Seidman, Acta Mater. 56, 3422 (2008).

    Article  CAS  Google Scholar 

  37. C.K. Sudbrack, K.E. Yoon, R.D. Noebe, D.N. Seidman, Acta Mater. 54, 3199 (2006).

    Article  CAS  Google Scholar 

  38. G. Martin, in Solid State Phase Transformation in Metals and Alloys (Les Éditions de Physique, Orsay, France, 1978), p. 337.

    Google Scholar 

  39. C.K. Sudbrack, R.D. Noebe, D.N. Seidman, Acta Mater. 55, 119 (2007).

    Article  CAS  Google Scholar 

  40. C.J. Kuehmann, P.W. Voorhees, Metall. Mater. Trans. A 27A, 937 (1996).

    Article  CAS  Google Scholar 

  41. T. Philippe, P.W. Voorhees, Acta Mater. 64, 4237 (2013).

    Article  Google Scholar 

  42. J.E. Morral, G.R. Purdy, Scr. Metall. Mater. 30, 905 (1994).

    Article  CAS  Google Scholar 

  43. A. Umantsev, G.B. Olson, Scr. Metall. Mater. 29, 1135 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Hono.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hono, K., Raabe, D., Ringer, S.P. et al. Atom probe tomography of metallic nanostructures. MRS Bulletin 41, 23–29 (2016). https://doi.org/10.1557/mrs.2015.314

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.314

Navigation