Skip to main content
Log in

Density-functional theory guided advances in phase-change materials and memories

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Phase-change materials (PCMs) are promising candidates for novel data-storage and memory applications. They encode digital information by exploiting the optical and electronic contrast between amorphous and crystalline states. Rapid and reversible switching between the two states can be induced by voltage or laser pulses. Here, we review how density-functional theory (DFT) is advancing our understanding of PCMs. We describe key DFT insights into structural, electronic, and bonding properties of PCMs and into technologically relevant processes such as fast crystallization and relaxation of the amorphous state. We also comment on the leading role played by predictive DFT simulations in new potential applications of PCMs, including topological properties, switching between different topological states, and magnetic properties of doped PCMs. Such DFT-based approaches are also projected to be powerful in guiding advances in other materials-science fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. M. Wuttig, N. Yamada, Nat. Mater. 6, 824 (2007).

    CAS  Google Scholar 

  2. T. Siegrist, P. Merkelbach, M. Wuttig, Annu. Rev. Condens. Matter Phys.

    CAS  Google Scholar 

  3. S. Raoux, F. Xiong, M. Wuttig, E. Pop, MRS Bull. 39, 703 (2014).

    Google Scholar 

  4. S.R. Elliott, Int. J. Appl. Glass Sci. 6, 15 (2015).

    CAS  Google Scholar 

  5. M.H. Lankhorst, B.W. Ketelaars, R.A. Wolters, Nat. Mater. 4, 347 (2005).

    CAS  Google Scholar 

  6. R.M. Martin, Electronic Structure: Basic Theory and Practical Methods (Cambridge University Press, Cambridge, UK, 2004).

    Google Scholar 

  7. D. Marx, J. Hutter, Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods (Cambridge University Press, Cambridge, UK, 2009).

    Google Scholar 

  8. V.L. Deringer, R. Dronskowski, M. Wuttig, Adv. Funct. Mater., published online June 10, 2015, http://dx.doi.org/10.1002/adfm.201500826.

  9. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7, 653 (2008).

    CAS  Google Scholar 

  10. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7, 972 (2008).

    CAS  Google Scholar 

  11. B. Huang, J. Robertson, Phys. Rev. B 81, 081204 (R) (2010).

    Google Scholar 

  12. S. Caravati, M. Bernasconi, M. Parrinello, J. Phys. Condens. Matter 22, 315801 (2010).

    CAS  Google Scholar 

  13. N. Yamada, MRS Bull. 21, 48 (1996).

    CAS  Google Scholar 

  14. T. Matsunaga, N. Yamada, Phys. Rev. B 69, 104111 (2004).

    Google Scholar 

  15. M. Wuttig, D. Lusebrink, D. Wamwangi, W. Welnic, M. Gillessen, R. Dronskowski, Nat. Mater. 6, 122 (2007).

    CAS  Google Scholar 

  16. R. Dronskowski, P.E. Blöchl, J. Phys. Chem. 97, 8617 (1993).

    CAS  Google Scholar 

  17. U.V. Waghmare, N.A. Spaldin, H.C. Kandpal, R. Seshadri, Phys. Rev. B 67, 125111 (2003).

    Google Scholar 

  18. R.P. Stoffel, V.L. Deringer, R.E. Simon, R.P. Hermann, R. Dronskowski, J. Phys. Condens. Matter 27, 085402 (2015).

    Google Scholar 

  19. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nat. Mater. 10, 202 (2011).

    CAS  Google Scholar 

  20. A. Edwards, A. Pineda, P. Schultz, M. Martin, A. Thompson, H. Hjalmarson, C. Umrigar, Phys. Rev. B 73, 045210 (2006).

    Google Scholar 

  21. S. Caravati, M. Bernasconi, T.D. Kühne, M. Krack, M. Parrinello, J. Phys. Condens. Matter 21, 255501 (2009).

    CAS  Google Scholar 

  22. H. Volker, P. Jost, M. Wuttig, Adv. Funct. Mater., published online June 10, 2015, http://dx.doi.org/10.1002/adfm.201500830.

  23. W. Zhang, A. Thiess, P. Zalden, R. Zeller, P.H. Dederichs, J.Y. Raty, M. Wuttig, S. Blügel, R. Mazzarello, Nat. Mater. 11, 952 (2012).

    CAS  Google Scholar 

  24. S. Caravati, M. Bernasconi, T.D. Kü hne, M. Krack, M. Parrinello, Appl. Phys. Lett. 91, 171906 (2007).

    Google Scholar 

  25. J. Akola, R. Jones, Phys. Rev. B 76, 235201 (2007).

    Google Scholar 

  26. J. Hegedüs, S.R. Elliott, Nat. Mater. 7, 399 (2008).

    Google Scholar 

  27. J. Akola, R. Jones, Phys. Rev. B 79, 134118 (2009).

    Google Scholar 

  28. M. Xu, Y.Q. Cheng, L. Wang, H.W. Sheng, Y. Meng, W.G. Yang, X.D. Han, E. Ma, Proc. Natl. Acad. Sci. U.S.A. 109, E1055 (2012).

    CAS  Google Scholar 

  29. A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nat. Mater. 3, 703 (2004).

    CAS  Google Scholar 

  30. M. Xu, Y. Cheng, H. Sheng, E. Ma, Phys. Rev. Lett. 103, 195502 (2009).

    CAS  Google Scholar 

  31. R. Mazzarello, S. Caravati, S. Angioletti-Uberti, M. Bernasconi, M. Parrinello, Phys. Rev. Lett. 104, 085503 (2010).

    Google Scholar 

  32. M. Micoulaut, J.Y. Raty, C. Otjacques, C. Bichara, Phys. Rev. B 81, 174206 (2010).

    Google Scholar 

  33. E. Cho, J. Im, C. Park, W.J. Son, D.H. Kim, H. Horii, J. Ihm, S. Han, J. Phys. Condens. Matter 22, 205504 (2010).

    CAS  Google Scholar 

  34. B. Cai, D.A. Drabold, S.R. Elliott, Appl. Phys. Lett. 97, 191908 (2010).

    Google Scholar 

  35. A.V. Kolobov, M. Krbal, P. Fons, J. Tominaga, T. Uruga, Nat. Chem. 3, 311 (2011).

    CAS  Google Scholar 

  36. X.-B. Li, X.Q. Liu, X. Liu, D. Han, Z. Zhang, X.D. Han, H.-B. Sun, S.B. Zhang, Phys. Rev. Lett. 107, 015501 (2011).

    Google Scholar 

  37. M. Micoulaut, A. Kachmar, T. Charpentier, Phys. Status Solidi B 249, 1890 (2012).

    CAS  Google Scholar 

  38. M. Krbal, A.V. Kolobov, P. Fons, K.V. Mitrofanov, Y. Tamenori, J. Hegedüs, S.R. Elliott, J. Tominaga, Appl. Phys. Lett. 102, 111904 (2013).

    Google Scholar 

  39. K.V. Mitrofanov, A.V. Kolobov, P. Fons, X. Wang, J. Tominaga, Y. Tamenori, T. Uruga, N. Ciocchini, D. Ielmini, J. Appl. Phys. 115, 173501 (2014).

    Google Scholar 

  40. V.L. Deringer, W. Zhang, M. Lumeij, S. Maintz, M. Wuttig, R. Mazzarello R. Dronskowski, Angew. Chem. Int. Ed. 53, 10817 (2014).

    CAS  Google Scholar 

  41. V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Phys. Chem. A 115, 5461 (2011).

    CAS  Google Scholar 

  42. S. Maintz, V.L. Deringer, A.L. Tchougréeff, R. Dronskowski, J. Comput. Chem. 34, 2557 (2013).

    CAS  Google Scholar 

  43. J.-Y. Raty, W. Zhang, J. Luckas, C. Chen, C. Bichara, R. Mazzarello, M. Wuttig, Nat. Commun. 6, 7467 (2015).

    CAS  Google Scholar 

  44. H.-S. P. Wong, S. Raoux, S.B. Kim, J. Liang, J.P. Reifenberg, B. Rajendran M. Asheghi, K.E. Goodson, Proc. IEEE 98, 2201 (2010).

    Google Scholar 

  45. D. Ielmini, A.L. Lacaita, D. Mantegazza, IEEE Trans. Electron Devices 54, 308 (2007).

    CAS  Google Scholar 

  46. P. Fantini, S. Brazzelli, E. Cazzini, A. Mani, Appl. Phys. Lett. 100, 013505 (2012).

    Google Scholar 

  47. D. Krebs, T. Bachmann, P. Jonnalagadda, L. Dellmann, S. Raoux, New J. Phys. 16, 043015 (2014).

    Google Scholar 

  48. J. Kalikka, J. Akola, R.O. Jones, Phys. Rev. B 90, 184109 (2014).

    Google Scholar 

  49. W. Zhang, I. Ronneberger, P. Zalden, M. Xu, M. Salinga, M. Wuttig R. Mazzarello, Sci. Rep. 4, 6529 (2014).

    CAS  Google Scholar 

  50. E.R. Meinders, A.V. Mijiritskii, L. van Pieterson, M. Wuttig, Optical Data Storage: Phase-Change Media and Recording (Springer, Dordrecht, The Netherlands, 2006).

    Google Scholar 

  51. T.H. Lee, S.R. Elliott, Phys. Rev. Lett. 107, 145702 (2011).

    CAS  Google Scholar 

  52. J. Kalikka, J. Akola, J. Larrucea, R.O. Jones, Phys. Rev. B 86, 144113 (2012).

    Google Scholar 

  53. I. Ronneberger, W. Zhang, H. Eshet, R. Mazzarello, Adv. Funct. Mater., published online May 5, 2015, http://dx.doi.org/10.1002/adfm.201500849.

  54. A. Laio, M. Parrinello, Proc. Natl. Acad. Sci. U.S.A. 99, 12562 (2002).

    CAS  Google Scholar 

  55. A. Sebastian, M. Le Gallo, D. Krebs, Nat. Commun. 5, 4314 (2014).

    CAS  Google Scholar 

  56. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Nat. Mater. 11 279 (2012).

    CAS  Google Scholar 

  57. R. Jeyasingh, S.W. Fong, J. Lee, Z. Li, K.W. Chang, D. Mantegazza, M. Asheghi, K.E. Goodson, H.S. Wong, Nano Lett. 14, 3419 (2014).

    CAS  Google Scholar 

  58. Z. Sun, J. Zhou, R. Ahuja, Phys. Rev. Lett. 96, 055507 (2006)

    Google Scholar 

  59. J. Da Silva, A. Walsh, H. Lee, Phys. Rev. B 78, 224111 (2008).

    Google Scholar 

  60. C. Pauly, M. Liebmann, A. Giussani, J. Kellner, S. Just, J. Sánchez-Barriga, E. Rienks, O. Rader, R. Calarco, G. Bihlmayer, M. Morgenstern, Appl. Phys. Lett. 103, 243109 (2013).

    Google Scholar 

  61. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012).

    CAS  Google Scholar 

  62. G.C. Sosso, G. Miceli, S. Caravati, J. Behler, M. Bernasconi, Phys. Rev. B 85, 174103 (2012).

    Google Scholar 

  63. G. Sosso, G. Miceli, S. Caravati, F. Giberti, J. Behler, M. Bernasconi, J. Phys. Chem. Lett. 4, 4241 (2013).

    CAS  Google Scholar 

  64. G. Sosso, J. Colombo, J. Behler, E. Del Gado, M. Bernasconi, J. Phys. Chem. B 118, 13621 (2014).

    CAS  Google Scholar 

  65. T. Matsunaga, J. Akola, S. Kohara, T. Honma, K. Kobayashi, E. Ikenaga R.O. Jones, N. Yamada, M. Takata, R. Kojima, Nat. Mater. 10, 129 (2011).

    CAS  Google Scholar 

  66. M. Salinga, E. Carria, A. Kaldenbach, M. Bornhofft, J. Benke, J. Mayer, M. Wuttig, Nat. Commun. 4, 2371 (2013).

    Google Scholar 

  67. P.G. Debenedetti, F.H. Stillinger, Nature 410, 259 (2001).

    CAS  Google Scholar 

  68. H. Zhang, C.-X. Liu, X.-L. Qi, X. Dai, Z. Fang, S.-C. Zhang, Nat. Phys. 5, 438 (2009).

    CAS  Google Scholar 

  69. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010).

    CAS  Google Scholar 

  70. J. Kim, J. Kim, S.-H. Jhi, Phys. Rev. B 82, 201312 (R) (2010).

    Google Scholar 

  71. R.E. Simpson, P. Fons, A.V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, J. Tominaga, Nat. Nanotechnol. 6, 501 (2011).

    CAS  Google Scholar 

  72. J. Tominaga, A.V. Kolobov, P. Fons, T. Nakano, S. Murakami, Adv. Mater. Interfaces 1, 1300027 (2014).

    Google Scholar 

  73. B. Sa, J. Zhou, Z. Sun, J. Tominaga, R. Ahuja, Phys. Rev. Lett. 109, 096802 (2012).

    Google Scholar 

  74. B. Prasai, M.E. Kordesch, D.A. Drabold, G. Chen, Phys. Status Solidi B 250, 1785 (2013).

    CAS  Google Scholar 

  75. J.M. Skelton, A.R. Pallipurath, T.-H. Lee, S.R. Elliott, Adv. Funct. Mater. 24, 7291 (2014).

    CAS  Google Scholar 

  76. M. Zhu, M. Xia, F. Rao, X. Li, L. Wu, X. Ji, S. Lv, Z. Song, S. Feng, H. Sun S. Zhang, Nat. Commun. 5, 4086 (2014).

    CAS  Google Scholar 

  77. W.-D. Song, L.-P. Shi, X.-S. Miao, C.-T. Chong, Adv. Mater. 20, 2394 (2008)

    CAS  Google Scholar 

  78. D. Ding, K. Bai, W.D. Song, L.P. Shi, R. Zhao, R. Ji, M. Sullivan, P. Wu, Phys. Rev. B 84, 214416 (2011).

    Google Scholar 

  79. W. Zhang, I. Ronneberger, Y. Li, R. Mazzarello, Adv. Mater. 24, 4387 (2012)

    CAS  Google Scholar 

  80. J.M. Skelton, S.R. Elliott, J. Phys. Condens. Matter 25, 205801 (2013).

    CAS  Google Scholar 

  81. A.L. Greer, Nat. Mater. 14, 542 (2015).

    CAS  Google Scholar 

  82. K.S. Novoselov, V.I. Fal’ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, Nature 490, 192 (2012).

    CAS  Google Scholar 

  83. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012).

    CAS  Google Scholar 

  84. T. Hickel, A. Dick, B. Grabowski, F. Körmann, J. Neugebauer, Steel Res. Int. 80, 4 (2010).

    Google Scholar 

  85. K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432, 488 (2004).

    CAS  Google Scholar 

Download references

Acknowledgments

W.Z., V.L.D., R.D., R.M., and M.W. gratefully acknowledge funding from Deutsche Forschungsgemeinschaft (DFG) within SFB 917 (“Nanoswitches”). W.Z. and M.W. acknowledge ERC Advanced Grant Disorder Control. W.Z. gratefully thanks the Young Talent Support Plan of Xi’an Jiaotong University. E.M. acknowledges support from US DoE-BES-DMSE, DE-FG02-13ER46056.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Deringer, V.L., Dronskowski, R. et al. Density-functional theory guided advances in phase-change materials and memories. MRS Bulletin 40, 856–869 (2015). https://doi.org/10.1557/mrs.2015.227

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.227

Navigation