Skip to main content
Log in

Nanoengineered thrusters for the next giant leap in space exploration

  • Engineered Nanomaterials in Aerospace
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The physics underlying operation of cold (room-temperature) ionic-liquid emitter sources for use in propulsion shows that such thrusters are advantaged relative to all other “rockets” because of the direct scaling of power with emitter array density. Nanomaterials and their integration through nano- and microfabrication can propel these charged-particle sources to the forefront and open up new applications including mass-efficient in-orbit satellite propulsion and high-thrust-density deep-space exploration. Analyses of electrostatic, fluid-dynamic, and electrochemical limits all suggest that arrays of such ionic-liquid thrusters can reach thrust densities beyond most in-space propulsion concepts, with a limit on nanoporous thruster packing density of ∼1 μm due to ionic-liquid viscous flow and electrochemistry. Nanoengineered materials and manufacturing schemes are suggested for the implementation of microfabricated and nanostructured thruster arrays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. R.G. Jahn, Physics of Electric Propulsion (McGraw-Hill, New York, 1968).

    Google Scholar 

  2. M. Martinez-Sanchez, J.E. Pollard, J. Propul. Power 14, 688 (1998).

    Article  CAS  Google Scholar 

  3. E. Ahedo, Plasma Phys. Control. Fusion 53, 124037 (2011).

    Article  Google Scholar 

  4. D.M. Goebel, R.M. Watkins, K.K. Jameson, J. Propul. Power 23, 552 (2007).

    Article  CAS  Google Scholar 

  5. D.J. Warner, R.D. Branam, W.A. Hargus, J. Propul. Power 26, 130 (2010).

    Article  CAS  Google Scholar 

  6. C.C. Farnell, C.C. Farnell, S.C. Farnell, J.D. Williams, “Electrostatic Analyzers with Application to Electric Propulsion Testing,” presented at the 33rd International Electric Propulsion Conference, Washington, DC, October 6–10, 2013, IEPC-2013-300.

  7. L.P Rand, J.D. Williams, IEEE Trans. Plasma Sci. 43, 190 (2015).

    Article  Google Scholar 

  8. J.K. Ziemer, S.M. Merkowitz, “Microthrust Propulsion of the LISA Mission,” presented at the 40th AIAA Joint Propulsion Conference, Fort Lauderdale, FL, July 12–14, 2004.

  9. S. Waydo, D. Henry, M. Campbell, Aerospace Conf. Proc. 431, 1–435-431-445 (IEEE, 2002).

    Google Scholar 

  10. M.C. Roco, C.A. Mirkin, M.C. Hersam, Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook (Springer, Boston 2011), vol. 1.

    Book  Google Scholar 

  11. “Report on Technology Horizons: A Vision for Air Force Science and Technology During 2010–2030” (Report AF/ST-TR-10–01, Defense Technical Information Center, Washington, DC, 2010).

  12. NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New Era in Space (National Academies Press, Washington, DC, 2012).

  13. R.G. Jahn, Physics of Electric Propulsion (McGraw-Hill, New York, 1968).

    Google Scholar 

  14. T. Welton, Chem. Rev. 99, 2071 (1999).

    Article  CAS  Google Scholar 

  15. G. Taylor, Proc. R. Soc. London, A 280, 383 (1964).

    Article  Google Scholar 

  16. P. Lozano, M. Martinez-Sanchez, J. Colloid Interface Sci. 282, 415 (2005).

    Article  CAS  Google Scholar 

  17. P.C. Lozano, J. Phys. D Appl. Phys. 39, 126 (2006).

    Article  CAS  Google Scholar 

  18. L.F. Velásquez-García, A.I. Akinwande, M. Martinez-Sanchez, J. Microelectromech. Syst. 15, 1272 (2006).

    Article  Google Scholar 

  19. D.G. Courtney, H. Li, P.C. Lozano, J. Microelectromech. Syst. 22, 471 (2013)

    Article  CAS  Google Scholar 

  20. S. Dandavino, C. Ataman, C.N. Ryan, S. Chakraborty, D. Courtney, J.P.W. Stark, H. Shea, J. Micromech. Microeng. 24, 075011 (2014).

    Article  Google Scholar 

  21. P. Lozano, M. Martínez-Sánchez, J. Colloid Interface Sci. 280, 149 (2004).

    Article  CAS  Google Scholar 

  22. S. Spearing, Acta Mater. 48, 179 (2000).

    Article  CAS  Google Scholar 

  23. I. Romero-Sanz, R. Bocanegra, J.F. de la Mora, M. Gamero-Castano, J. Appl. Phys. 94, 3599 (2003).

    Article  CAS  Google Scholar 

  24. P. Lozano, M. Martínez-Sánchez, J.M. Lopez-Urdiales, J. Colloid Interface Sci. 276, 392 (2004).

    Article  CAS  Google Scholar 

  25. D.G. Courtney, H.Q. Li, P. Lozano, J. Phys. D Appl. Phys. 45, 485203 (2012)

    Article  Google Scholar 

  26. N. Brikner, P.C. Lozano, Appl. Phys. Lett. 101, 193504 (2012).

    Article  Google Scholar 

  27. M.D. Canonica, B.L. Wardle, P.C. Lozano, J. Micromech. Microeng. 25, 015017 (2015).

    Article  Google Scholar 

  28. D. Krejci, F. Mier-Hicks, C. Fucetola, A. Hsu-Schouten, F. Martel, P. Lozano, “Design and Characterization of a Scalable Ion Electrospray Propulsion System,” presented at the 34th International Electric Propulsion Conference, July 4–10, 2015, Hyogo-Kobe, Japan, IEPC-2015-149.

  29. N. Lachman, H. Xu, Y. Zhou, M. Ghaffari, M. Lin, D. Bhattacharyya, A. Ugur K.K. Gleason, Q.M. Zhang, B.L. Wardle, Adv. Mater. Interfaces 1, 1400076 (2014).

    Article  Google Scholar 

  30. Y. Zhou, M. Ghaffari, M. Lin, E.M. Parsons, Y. Liu, B.L. Wardle, Q.M. Zhang Electrochim. Acta 111, 608 (2013).

    Article  CAS  Google Scholar 

  31. A.J.M. Mackus, A.A. Bol, W.M.M. Kessels, Nanoscale 6, 10941 (2014).

    Article  CAS  Google Scholar 

  32. M. Knez, K. Nielsch, L. Niinistö, Adv. Mater. 19, 3425 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

B.L.W. acknowledges support from AFOSR under Grant FA9550-11-1-0192 and NSF under Grant CMMI-1130437. P.C.L. acknowledges support from NASA through contract No. NNL13AA12C and several DOD agencies.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano, P.C., Wardle, B.L., Moloney, P. et al. Nanoengineered thrusters for the next giant leap in space exploration. MRS Bulletin 40, 842–849 (2015). https://doi.org/10.1557/mrs.2015.226

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.226

Navigation