Skip to main content

Advertisement

Log in

Advances in thermoelectrics: From single phases to hierarchical nanostructures and back

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

With more than two-thirds of utilized energy being lost as waste heat, there is compelling motivation for high-performance thermoelectric materials that can directly convert heat to electrical energy. However, over the decades, practical realization of thermoelectric materials has been limited by the hitherto low figure of merit, ZT, which governs the Carnot efficiency. This article describes our long-standing efforts to advance ZT to record levels starting from exploratory synthesis and evolving into the nanostructuring and panoscopic paradigm, which has helped to usher in a new era of investigation for thermoelectrics. The term panoscopic is meant as an attempt to integrate all length scales and multiple physical concepts into a single material. As in any other energy-conversion technology involving materials, thermoelectrics research is a challenging exercise in taming “contra-indicated” properties. Critical properties such as high electrical conductivity, thermoelectric power, low thermal conductivity, and mechanical strength do not tend to favor coexistence in a single material. How these can be achieved in certain systems leading to record values of ZT is also described. Endotaxial nanostructures and mesoscale engineering in thermoelectrics enable effective phonon scattering with negligible electron scattering. By combining all relevant length scales hierarchically, we can achieve large enhancements in thermoelectric performance. The field, however, continues to produce surprises.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

References

  1. M.G. Kanatzidis, Chem. Mater. 22, 648 (2010).

    Google Scholar 

  2. J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, Angew. Chem. Int. Ed. 48, 8616 (2009).

    Google Scholar 

  3. T.G. Harman, J.M. Honig, Thermoelectric and Thermomagnetic Effects and Application (McGraw-Hill Education, New York, 1967).

  4. C. Wood, Rep. Prog. Phys. 51, 459 (1988).

    Google Scholar 

  5. D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995).

  6. http://www.eia.gov/todayinenergy/detail.cfm?id=16511.

  7. E. Altenkirch, Physik. Z. 12, 920 (1911).

    Google Scholar 

  8. P.E. Eogers, J.L. Ridihalgh, J. Spacecr. Rockets 11, 704 (1974).

    Google Scholar 

  9. W.L. Maag, M. Patrick, L.H. Frshbach, Contract 503, 25 (1973).

    Google Scholar 

  10. N. Elsner, J. Chin, H. Staley, Annual Report, 1 Jul. 1974–30 Jun. 1975 General Atomic Co., San Diego, CA. 1, 1976.

  11. D.M. Rowe, “Thermoelectric Power Generation” Proc. IEEE [Online Early Access]. Published Online: 1978, http://digital-library.theiet.org/content/journals/10.1049/piee.1978.0247.

  12. E. Skrabek, Proc. 9th Intersociety Energy Convers. Eng. Conf. 1, 160 (1974).

    Google Scholar 

  13. S. Decheva, S. Dimitrova, Bulg. J. Phys. 5, 94 (1978).

    Google Scholar 

  14. L.D. Hicks, M.S. Dresselhaus, Phys. Rev. B: Condens. Matter 47, 12727 (1993).

    Google Scholar 

  15. G.S. Nolas, G.A. Slack, J.L. Cohn, S.B. Schujman, I. Ieee, “The Next Generation of Thermoelectric Materials,” Proc. XVII International Conference on Thermoelectrics 98 (1998), pp. 294 – 297.

  16. D.Y. Chung, T.P. Hogan, P. Brazis, M. Rocci-Lane, C.R. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, Science 287, 1024 (2000).

    Google Scholar 

  17. D.Y. Chung, T.P. Hogan, M. Rocci-Lane, P. Brazis, J.R. Ireland, C.R. Kannewurf, M. Bastea, C. Uher, M.G. Kanatzidis, J. Am. Chem. Soc. 126, 6414 (2004).

    Google Scholar 

  18. K.F. Hsu, S. Loo, F. Guo, W. Chen, J.S. Dyck, C. Uher, T.P. Hogan, E.K. Polychroniadis, M.G. Kanatzidis, Science 303, 818 (2004).

    Google Scholar 

  19. X. Shi, J. Yang, J.R. Salvador, M.F. Chi, J.Y. Cho, H. Wang, S.Q. Bai, J.H. Yang, W.Q. Zhang, L.D. Chen, J. Am. Chem. Soc. 133, 7837 (2011).

    Google Scholar 

  20. G.S. Nolas, D.T. Morelli, T.M. Tritt, Annu. Rev. Mater. Sci. 29, 89 (1999).

    Google Scholar 

  21. B.C. Sales, B.C. Chakoumakos, D. Mandrus, Phys. Rev. B Condens. Matter 61, 2475 (2000).

    Google Scholar 

  22. X. Shi, H. Kong, C.P. Li, C. Uher, J. Yang, J.R. Salvador, H. Wang, L. Chen, W. Zhang, Appl. Phys. Lett. 92, 182101 (2008).

    Google Scholar 

  23. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A.Y. Samunin, M.V. Vedernikov, Phys. Rev. B Condens. Matter 74, 045207 (2006).

    Google Scholar 

  24. W. Liu, X. Tan, K. Yin, H. Liu, X. Tang, J. Shi, Q. Zhang, C. Uher, Phys. Rev. Lett. 108, 166601 (2012).

    Google Scholar 

  25. G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Int. Mater. Rev. 48, 45 (2003).

    Google Scholar 

  26. H. Zhao, J. Sui, Z. Tang, Y. Lan, Q. Jie, D. Kraemer, K. McEnaney, A. Guloy, G. Chen, Z. Ren, Nano Energy 7, 97 (2014).

    Google Scholar 

  27. B.A. Ravich, B.A. Efimova, I.A. Smirnov, Semiconducting Lead Chalcogenides (Plenum, New York, 1970).

  28. A. Mrotzek, M.G. Kanatzidis, Acc. Chem. Res. 36, 111 (2003).

    Google Scholar 

  29. M.G. Kanatzidis, Acc. Chem. Res. 38, 359 (2005).

    Google Scholar 

  30. D.Y. Chung, K.S. Choi, L. Iordanidis, J.L. Schindler, P.W. Brazis, C.R. Kannewurf, B.X. Chen, S.Q. Hu, C. Uher, M.G. Kanatzidis, Chem. Mater. 9, 3060 (1997).

    Google Scholar 

  31. M.G. Kanatzidis, T.J. McCarthy, T.A. Tanzer, L.H. Chen, L. Iordanidis, T. Hogan, C.R. Kannewurf, C. Uher, B.X. Chen, Chem. Mater. 8, 1465 (1996).

    Google Scholar 

  32. M.G. Kanatzidis, Recent Trends in Thermoelectric Materials Research 69, 51 (2001).

    Google Scholar 

  33. D. Bilc, S.D. Mahanti, E. Quarez, K.F. Hsu, R. Pcionek, M.G. Kanatzidis, Phys. Rev. Lett. 93, 146403 (2004).

    Google Scholar 

  34. P.F.R. Poudeu, J. D’Angelo, A.D. Downey, J.L. Short, T.P. Hogan, M.G. Kanatzidis, Angew. Chem. Int. Ed. 45, 3835 (2006).

    Google Scholar 

  35. E. Quarez, K.F. Hsu, R. Pcionek, N. Frangis, E.K. Polychroniadis, M.G. Kanatzidis, J. Am. Chem. Soc. 127 (25), 9177 (2005).

  36. J. He, S.N. Girard, M.G. Kanatzidis, V.P. Dravid, Adv. Funct. Mater. 20, 764 (2010).

    Google Scholar 

  37. J. He, J.R. Sootsman, S.N. Girard, J.-C. Zheng, J. Wen, Y. Zhu, M.G. Kanatzidis, V.P. Dravid, J. Am. Chem. Soc. 132, 8669 (2010).

    Google Scholar 

  38. S.N. Girard, J. He, C. Li, S. Moses, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Nano Lett. 10, 2825 (2010).

    Google Scholar 

  39. S.N. Girard, J. He, X. Zhou, D. Shoemaker, C.M. Jaworski, C. Uher, V.P. Dravid, J.P. Heremans, M.G. Kanatzidis, J. Am. Chem. Soc. 133, 16588 (2011).

    Google Scholar 

  40. K. Biswas, J. He, Q. Zhang, G. Wang, C. Uher, V.P. Dravid, M.G. Kanatzidis, Nat. Chem. 3, 160 (2011).

    Google Scholar 

  41. K. Biswas, J. He, I.D. Blum, C.-I. Wu, T. Hogan, D.N. Seidman, V.P. Dravid, M.G. Kanatzidis, Nature 489, 414 (2012).

    Google Scholar 

  42. L.D. Zhao, S.H. Lo, Y.S. Zhang, H. Sun, G.J. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Nature 508, 373 (2014).

    Google Scholar 

  43. L.-D. Zhao, V.P. Dravid, M.G. Kanatzidis, Energy Environ. Sci. 7 (1), 251 (2014).

Download references

Acknowledgment

M.K. thanks the US Department of Energy (DOE), Basic Energy Sciences, through the EFRC Program for the last five years. Before that, he obtained funding from the Office of Naval Research. The EFRC was particularly important because it enabled a number of researchers to collaborate on many of the important problems in thermoelectrics. He also thanks his collaborators at Northwestern University, Vinayak Dravid, Chris Wolverton, and David Seidman; Tim Hogan, Bhanu Mahanti, and Eldon Case at Michigan State University; Ctirad Uher at the University of Michigan; Jos Heremans at Ohio State University; and Yaniv Gelbstein at Ben Gurion University in Israel. He would like to acknowledge recent postdoctoral fellows Lidong Zhao, Kanishka Biswas, John Androulakis, Jiaqing He, and Gangjian Tan and graduate students Rachel Korkosz, Steven Girard, Yeseul Lee, and Thomas Chasapis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mercouri G. Kanatzidis.

Additional information

The following article is based on the MRS Medal presentation given by Mercouri G. Kanatzidis at the 2014 Materials Research Society Fall Meeting in Boston. Kanatzidis was recognized “For the discovery and development of nanostructured thermoelectric materials.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanatzidis, M.G. Advances in thermoelectrics: From single phases to hierarchical nanostructures and back. MRS Bulletin 40, 687–694 (2015). https://doi.org/10.1557/mrs.2015.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2015.173

Navigation