Skip to main content
Log in

MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films

  • CVD Diamond—Research, Applications, and Challenges
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Diamond, because of its unique physical, chemical, and electrical properties and the feasibility of growing it in thin-film form, is an ideal choice as a material for the fabrication of reliable, long endurance, microelectromechanical/nanoelectromechanical systems (MEMS/NEMS). However, various practical challenges, including wafer-scale thickness uniformity, CMOS compatibility, surface micromachining, and, more importantly, controlling the internal stress of the diamond films, make this material more challenging for MEMS engineers. Recent advances in the growth of diamond films using chemical vapor deposition have changed this landscape since most technical hurdles have been overcome, enabling a new era of diamondbased MEMS and NEMS development. This article discusses a few examples of MEMS and NEMS devices that have been fabricated using mono-, nano-, and ultrananocrystalline diamond films as well as their performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatissa, A.V. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardos, H.G. Busmann, E.M. Meyer, M.Q. Ding, Diam. Relat. Mater. 10, 1952 (2001).

    Google Scholar 

  2. E. Kohn, P. Gluche, M. Adamschik, Diam. Relat. Mater. 8, 934 (1999).

    Google Scholar 

  3. J.E. Butler, A.V. Sumant, Chem. Vap. Depos. 14 (7–8), 145 (2008).

    Google Scholar 

  4. F. Buja, A.V. Sumant, W.M. van Spengen, Solid-State Sensors, Actuators and Microsystems 2349 (2013), doi: http://10.1109/Transducers.2013.6627277.

    Google Scholar 

  5. M.Y. Liao, C. Li, S. Hishita, Y. Koide, J. Micromech. Microeng. 20, 085002 (2010).

    Google Scholar 

  6. M.Y. Liao, S. Hishita, E. Watanabe, S. Koizumi, Y. Koide, Adv. Mater. 22, 5393 (2010).

    Google Scholar 

  7. S. Sudarsan, J. Hiller, B. Kabius, O. Auciello, Appl. Phys. Lett. 90, 134101 (2007).

    Google Scholar 

  8. M. Zalazar, P. Gurman, J. Park, D. Kim, S. Hong, L. Stan, R. Divan, D. Czaplewski, O. Auciello, Appl. Phys. Lett. 102, 104101 (2013).

    Google Scholar 

  9. A.V. Sumant, O. Auciello, H.-C. Yuan, Z. Ma, R.W. Carpick, D.C. Mancini, Proc. SPIE Int. Soc. Opt. Eng. 7317, 731817 (2009).

    Google Scholar 

  10. C. Goldsmith, A. Sumant, O. Auciello, J. Carlisle, H. Zeng, J.C.M. Hwang, C. Palego, W. Wang, R. Carpick, V. Adiga, A. Datta, C. Gudeman, S. O’Brien, S. Sampath, IEEE Int. Microw. Symp. Dig. 1246 (2010).

    Google Scholar 

  11. J.R. Maze, P.L. Stanwix, J.S. Hodges, S. Hong, J.M. Taylor, P. Cappellaro, L. Jiang, M.V.G. Dutt, E. Togan, A.S. Zibrov, A. Yacoby, R.L. Walsworth, M.D. Lukin, Nature 455, 644 (2008).

    Google Scholar 

  12. J.M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P.R. Hemmer, A. Yacoby, R. Walsworth, M.D. Lukin, Nat. Phys. 4, 810 (2008).

    Google Scholar 

  13. S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.B. Campbell, Nano Lett. 4, 2027 (2004).

    Google Scholar 

  14. M. Adamschik, J. Kusterer, P. Schmid, K.B. Schad, D. Grobe, E. Kohn, Diam. Relat. Mater. 11, 672 (2002).

    Google Scholar 

  15. S. Battacharyya, O. Auciello, J. Birrell, J.A. Carlisle, L.A. Curtiss, A.N. Goyete, D.M. Gruen, A.R. Krauss, J. Schlueter, A.V. Sumant, P. Zapol, Appl. Phys. Lett. 79 (10), 1441 (2001).

    Google Scholar 

  16. O.A. Williams, A. Kriele, J. Hees, M. Wolfer, W. Muller-Sebert, C.E. Nebel, Chem. Phys. Lett. 495, 84 (2010).

    Google Scholar 

  17. J. Wang, J.E. Butler, T. Feygelson, C.T.C. Nguyen, 17th IEEE International Conference on Micro Electro Mechanical Systems, Technical Digest. 641 (2004).

    Google Scholar 

  18. A. Gaidarzhy, M. Imboden, P. Mohanty, J. Rankin, B.W. Sheldon, Appl. Phys. Lett. 91, 203503 (2007).

    Google Scholar 

  19. J.G. Rodriguez-Madrid, G.F. Iriarte, J. Pedros, O.A. Williams, D. Brink, F. Calle, IEEE Electron Device Lett. 33, 495 (2012).

    Google Scholar 

  20. M. Imboden, O. Williams, P. Mohanty, Appl. Phys. Lett. 102, 103502 (2013).

    Google Scholar 

  21. M. Imboden, O.A. Williams, P. Mohanty, Nano Lett. 13, 4014 (2013).

    Google Scholar 

  22. S. Mandal, T. Bautze, O.A. Williams, C. Naud, E. Bustarret, F. Omnes, P. Rodiere, T. Meunier, C. Baeuerle, L. Saminadayar, ACS Nano 5, 7144 (2011).

    Google Scholar 

  23. T. Bautze, S. Mandal, O.A. Williams, P. Rodière, T. Meunier, C. Bäuerle, Carbon 72, 100 (2014).

    Google Scholar 

  24. G.M. Rebeiz, RF MEMS, Theory, Design and Technology (Wiley, NY, 2003).

    Google Scholar 

  25. Z.J. Yao, S. Chen, S. Eshelman, D. Denniston, C. Goldsmith, J. Microelectromech. Syst. 8 (2), 129 (1999).

    Google Scholar 

  26. C.L. Goldsmith, Z. Yao, S. Eshelman, D. Denniston, IEEE Microwave and Guided Wave Lett. 8 (8), 269 (1998).

    Google Scholar 

  27. O. Auciello, S. Pacheco, A.V. Sumant, C. Gudeman, S. Sampath, A. Datta, R.W. Carpick, V.P. Adiga, P. Zurcher, Z. Ma, H.C. Yuan, J.A. Carlisle, B. Kabius, J. Hiller, IEEE Microwave Mag. 8, 61 (2008).

    Google Scholar 

  28. A.V. Sumant, O. Auciello, R.W. Carpick, S. Srinivasan, J.E. Butler, MRS Bull. 35, 281 (2010).

    Google Scholar 

  29. A.V. Sumant, O. Auciello, D. Mancini, US Patent 8,354,290 B2 (2013).

    Google Scholar 

  30. O. Auciello, A.V. Sumant, C. Goldsmith, S. O’Brien, S. Sampath, C. Gudeman, W. Wang, J.C.M. Hwang, J. Swonger, J.A. Carlisle, S. Balachandran, D.C. Mancini, Proc. in SPIE 7679, 9 (2010).

    Google Scholar 

Download references

Acknowledgments

A.V.S. and O.A. would like to acknowledge funding supported by DARPA under contracts MIPR 06-W238, and by the US Department of Energy, Office of Science, Office of Basic Energy Sciences-Materials Science, under Contract No. DE-AC02–06CH11357. Use of the Center for Nanoscale Materials was supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under Contract No. DE-AC02–06CH11357. O.A. would like to acknowledge support from UTD through the Endowed Chair Professor initiation. O.W. would like to acknowledge Marie Curie Actions for his Intra-European Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anirudha V. Sumant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumant, A.V., Auciello, O., Liao, M. et al. MEMS/NEMS based on mono-, nano-, and ultrananocrystalline diamond films. MRS Bulletin 39, 511–516 (2014). https://doi.org/10.1557/mrs.2014.98

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.98

Navigation