Skip to main content

Advertisement

Log in

“Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion

  • Elastic Strain Engineering
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Elastic strain engineering offers a new route to enable high-performance catalysts, electrochemical energy conversion devices, separation membranes and memristors. By applying mechanical stress, the inherent energy landscape of reactions involved in the material can be altered. This is the so-called mechano-chemical coupling. Here we discuss how elastic strain activates reactions on metals and oxides. We also present analogies to strained polymer reactions. A rich set of investigations have been performed on strained metal surfaces over the last 15 years, and the mechanistic reasons behind strain-induced reactivity are explained by an electronic structure model. On the other hand, the potential of strain engineering of oxides for catalytic and energy applications has been largely underexplored. In oxides, mechanical stress couples to reaction and diffusion kinetics by altering the oxygen defect formation enthalpy, migration energy barrier, adsorption energy, dissociation barrier, and charge transfer barrier. A generalization of the principles for stress activated reactions from polymers to metals to oxides is offered, and the prospect of using elastic strain to tune reaction and diffusion kinetics in functional oxides is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. A.T. Bell, Science 299 (5613), 1688 (2003).

    Google Scholar 

  2. B.C.H. Steele, A. Heinzel, Nature 414 (6861), 345 (2001).

    Google Scholar 

  3. V.R. Stamenkovic, B. Fowler, B.S. Mun, G.F. Wang, P.N. Ross, C.A. Lucas, N.M. Markovic, Science 315 (5811), 493 (2007).

    Google Scholar 

  4. M.Z. Jacobson, W.G. Colella, D.M. Golden, Science 308 (5730), 1901 (2005).

    Google Scholar 

  5. J.L. Zhang, M.B. Vukmirovic, Y. Xu, M. Mavrikakis, R.R. Adzic, Angew. Chem. Int. Ed. Engl. 44 (14), 2132 (2005).

    Google Scholar 

  6. C. Costentin, S. Drouet, M. Robert, J.M. Saveant, Science 338 (6103), 90 (2012).

    Google Scholar 

  7. Y. Nakato, N. Takamori, H. Tsubomura, Nature 295 (5847), 312 (1982).

    Google Scholar 

  8. W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, Science 330 (6012), 1797 (2010).

    Google Scholar 

  9. J.M. Tarascon, M. Armand, Nature 414 (6861), 359 (2001).

    Google Scholar 

  10. B. Kang, G. Ceder, Nature 458 (7235), 190 (2009).

    Google Scholar 

  11. M.M. Caruso, D.A. Davis, Q. Shen, S.A. Odom, N.R. Sottos, S.R. White, J.S. Moore, Chem. Rev. 109 (11), 5755 (2009).

    Google Scholar 

  12. C.R. Hickenboth, J.S. Moore, S.R. White, N.R. Sottos, J. Baudry, S.R. Wilson, Nature 446 (7134), 423 (2007).

    Google Scholar 

  13. J. Liang, M. Fernandez, ACS Nano 3 (7), 1628 (2009).

    Google Scholar 

  14. D.A. Davis, A. Hamilton, J.L Yang, L.D. Cremar, D. Van Gough, S.L. Potisek, M.T. Ong, P.V. Braun, T.J. Martinez, S.R. White, Nature 459 (7243), 68 (2009).

    Google Scholar 

  15. L. Grabow, Y. Xu, M. Mavrikakis, Phys. Chem. Chem. Phys. 8 (29), 3369 (2006).

    Google Scholar 

  16. S.L. Craig, Nature 487 (7406), 176 (2012).

    Google Scholar 

  17. S. Akbulatov, Y. Tian, R. Boulatov, J. Am. Chem. Soc. 134 (18), 7620 (2012).

    Google Scholar 

  18. M. Mavrikakis, B. Hammer, J.K. Norskov, Phys. Rev. Lett. 81 (13), 2819 (1998).

    Google Scholar 

  19. M. Gsell, P. Jakob, D. Menzel, Science 280 (5364), 717 (1998).

    Google Scholar 

  20. M. Mavrikakis, P. Stoltze, J.K. Norskov, Catal. Lett. 64 (2-4), 101 (2000).

    Google Scholar 

  21. B. Hammer, J.K. Norskov, Surf. Sci. 343, 211 (1995).

    Google Scholar 

  22. J. Wintterlin, T. Zambelli, J. Trost, J. Greeley, M. Mavrikakis, Angew. Chem. Int. Ed. Engl. 42 (25), 2850 (2003).

    Google Scholar 

  23. Y. Xu, M. Mavrikakis, J. Phys. Chem. B 107 (35), 9298 (2003).

    Google Scholar 

  24. Y. Xu, M. Mavrikakis, Surf. Sci. 494 (2), 131 (2001).

    Google Scholar 

  25. J. Greeley, W.R. Krekelberg, M. Mavrikakis, Angew. Chem. Int. Ed. Engl. 43 (33), 4296 (2004).

    Google Scholar 

  26. P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C.F. Yu, Z.C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, Nat. Chem. 2 (6), 454 (2010).

    Google Scholar 

  27. F.W. Herbert, K.J. Van Vliet, B. Yildiz, MRS Commun. 2 (01), 23 (2011).

    Google Scholar 

  28. A. Ohmoto, H.Y. Hwang, Nature 427 ( 6973), 423 (2004).

    Google Scholar 

  29. N. Reyren, A.D. Caviglia, L.F. Kourkoutis, G. Hammerl, C. Richter, C.W. Schneider, T. Kopp, A.-S. Ruetschi, D. Jaccard, M. Gabay, D.A. Mueller, J.-M. Triscone, J. Mannhart, Science 317 (5842), 1196 (2007).

    Google Scholar 

  30. A. Evans, A. Bieberle-Hutter, J.L.M. Rupp, L.J. Gauckler, J. Power Sources 194 (1), 119 (2009).

    Google Scholar 

  31. R. Tolke, A. Bieberle-Hutter, A. Evans, J.L.M Rupp, L.J. Gauckler, J. Eur. Ceram. Soc. 32 (12), 3229 (2012).

    Google Scholar 

  32. J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough, Y. Shao-Horn, Nat. Chem. 3 (8), 647 (2011).

    Google Scholar 

  33. S.B. Adler, J.A. Lane, B.C.H. Steele, J. Electrochem. Soc. 143, 3554 (1996).

    Google Scholar 

  34. N. Barsan, D. Koziej, U. Weimar, Sensor. Actuat. B-Chem. 121 (1), 18 (2007).

    Google Scholar 

  35. R. Waser, M. Aono, Nat. Mater. 6 (11), 833 (2007).

    Google Scholar 

  36. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21 (25–26), 2632 (2009).

    Google Scholar 

  37. J.X. Zhang, Q. He, M. Trassin, W. Luo, D. Yi, M.D. Rossell, P. Yu, L. You, C.H. Wang, C.Y. Kuo, Phys. Rev. Lett. 107 (14), 147602 (2011).

    Google Scholar 

  38. K.T. Ko, M.H. Jung, Q. He, J.H. Lee, C.S. Woo, K. Chu, J. Seidel, B.G. Jeon, Y.S. Oh, K.H. Kim et al., Nat. Commun. 2, 567 (2011).

    Google Scholar 

  39. Q. He, Y.H. Chu, J.T. Heron, S.Y. Yang, W.I. Liang, C.Y. Kuo, H.J. Lin, P. Yu, C.W. Liang, R.J. Zeches et al., Nat. Commun. 2, 225 (2011).

    Google Scholar 

  40. R. Ramesh, N.A. Spaldin, Nat. Mater. 6 (1), 21 (2007).

    Google Scholar 

  41. Y. Kuru, D. Marrocchelli, S.R. Bishop, D. Chen, B. Yildiz, H.L. Tuller, J. Electrochem. Soc. 159 (11), F799 (2012).

    Google Scholar 

  42. Y. Ding, D. Haskel, Y.C. Tseng, E. Kaneshita, M. van Veenendaal, J.F. Mitchell, S.V. Sinogeikin, V. Prakapenka, H.K. Mao, Phys. Rev. Lett. 102 (23), 237201 (2009).

    Google Scholar 

  43. A.D. Rata, A. Herklotz, K. Nenkov, L. Schultz, K. Dorr, Phys. Rev. Lett. 100 (7), 076401 (2008).

    Google Scholar 

  44. J.B. Goodenough, J.S. Zhou, Chem. Mater. 10 (10), 2980 (1998).

    Google Scholar 

  45. M. Haverkort, Z. Hu, J. Cezar, T. Burnus, H. Hartmann, M. Reuther, C. Zobel, T. Lorenz, A. Tanaka, N. Brookes, Phys. Rev. Lett. 97 (17), 247208 (2006).

    Google Scholar 

  46. D. Fuchs, E. Arac, C. Pinta, S. Schuppler, R. Schneider, H. v. Löhneysen, Phys. Rev. B 77 (1), 014434 (2008).

    Google Scholar 

  47. W. Lee, J.W. Han, Y. Chen, Z. Cai, B. Yildiz, J. Am. Chem. Soc. 135 (21), 7909 (2013).

    Google Scholar 

  48. M.L. Kubicek, T. Fromling, H. Hutter, J. Fleig, J. Electrochem. Soc. 158 (6), B727 (2011).

    Google Scholar 

  49. W.C. Chueh, S.M. Haile, Annu. Rev. Chem. Biomol. 3, 313 (2012).

    Google Scholar 

  50. W. Jung, H.L. Tuller, Adv. Energy Mater. 1 (6), 1184 (2011).

    Google Scholar 

  51. N.A. Deskins, R. Rousseau, M. Dupuis, J. Phys. Chem. C 114, 5891 (2010).

    Google Scholar 

  52. Y.-L. Lee, J. Kleis, J. Rossmeisl, Y. Shao-Horn, D. Morgan, Energy Environ. Sci. 4 (10), 3966 (2011).

    Google Scholar 

  53. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, Science 334 (6061), 1383 (2011).

    Google Scholar 

  54. A. Chroneos, B. Yildiz, A. Tarancón, D. Parfitt, J.A. Kilner, Energy Environ. Sci. 4 (8), 2774 (2011).

    Google Scholar 

  55. M.A. Habib, M. Nemitallah, R. Ben-Mansour, Energ. Fuel. 27 (1), 2 (2013).

    Google Scholar 

  56. Y. Sugawara, K. Ogawa, H. Goto, S. Oikawa, K. Akaike, N. Komura, R. Eguchi, K. Kaji, S. Gohda, Y. Kubozono, Sensor Actuat. B-Chem. 171, 544 (2012).

    Google Scholar 

  57. R. Si, J. Raitano, N. Yi, L.H. Zhang, S.W. Chan, M. Flytzani-Stephanopoulos, Catal. Today 180 (1), 68 (2012).

    Google Scholar 

  58. Z. Zhou, S. Kooi, M. Flytzani-Stephanopoulos, H. Saltsburg, Adv. Funct Mater. 18 (18), 2801 (2008).

    Google Scholar 

  59. N. Yi, R. Si, H. Saltsburg, M. Flytzani-Stephanopoulos, Energy Environ. Sci. 3 (6), 831 (2010).

    Google Scholar 

  60. V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174 (1–4), 135 (2004).

    Google Scholar 

  61. J. Garcia-Barriocanal, A. Rivera-Calzada, M. Varela, Z. Sefrioui, E. Iborra, C. Leon, S.J. Pennycook, J. Santamaria, Science 321 (5889), 676 (2008).

    Google Scholar 

  62. J.A. Kilner, Nat. Mater. 7 (11), 838 (2008).

    Google Scholar 

  63. A. Cavallaro, M. Burriel, J. Roqueta, A. Apostolidis, A. Bernardi, A. Tarancon, R. Srinivasan, S.N. Cook, H.L. Fraser, J.A. Kilner, Solid State Ionics 181 (13–14), 592 (2010).

    Google Scholar 

  64. X. Guo, Science 324 (5926), 465 (2009).

    Google Scholar 

  65. R.A. De Souza, A.H.H. Ramadan, Phys. Chem. Chem. Phys. 15 (13), 4505 (2013).

    Google Scholar 

  66. J.L.M. Rupp, Solid State Ionics 207, 1 (2012).

    Google Scholar 

  67. C. Korte, A. Peters, J. Janek, D. Hesse, N. Zakharov, Phys. Chem. Chem. Phys. 10 (31), 4623 (2008).

    Google Scholar 

  68. M. Sillassen, P. Eklund, N. Pryds, E. Johnson, U. Helmersson, J. Bottiger, Adv. Funct. Mater. 20 (13), 2071 (2010).

    Google Scholar 

  69. S. Sanna, V. Esposito, A. Tebano, S. Licoccia, E. Traversa, G. Balestrino, Small 6 (17), 1863 (2010).

    Google Scholar 

  70. K.M. Kant, V. Esposito, N. Pryds, Appl. Phys. Lett. 100 (3), 033105 (2012).

    Google Scholar 

  71. D. Pergolesi, E. Fabbri, S.N. Cook, V. Roddatis, E. Traversa, J.A. Kilner, ACS Nano 6 (12), 10524 (2012).

    Google Scholar 

  72. B. Li, J.M. Zhang, T. Kaspar, V. Shutthanandan, R.C. Ewing, J. Lian, Phys. Chem. Chem. Phys. 15 (4), 1296 (2013).

    Google Scholar 

  73. H. Aydin, C. Korte, M. Rohnke, J. Janek, Phys. Chem. Chem. Phys. 15 (6), 1944 (2013).

    Google Scholar 

  74. J. Rupp, E. Fabbri, D. Marrocchelli, J.-W. Han, D. Chen, E. Traversa, H.L. Tuller, B. Yildiz, Adv. Funct. Mater. (2013), doi: 10.1002/adfm.201302117.

  75. I. Kosacki, C.M. Rouleau, P.F. Becher, J. Bentley, D.H. Lowndes, Solid State Ionics 176 (13–14), 1319 (2005).

    Google Scholar 

  76. J. Jiang, X. Hu, W. Shen, C. Ni, J.L. Hertz, Appl. Phys. Lett. 102 (14), 143901 (2013).

    Google Scholar 

  77. A. Kushima, B. Yildiz, J. Mater. Chem. 20 (23), 4809 (2010).

    Google Scholar 

  78. R.A. De Souza, A. Ramadan, S. Horner, Energy Environ. Sci. 5 (1), 5445 (2012).

    Google Scholar 

  79. W.L. Cheah, M.W. Finnis, J. Mater. Sci. 47 (4), 1631 (2012).

    Google Scholar 

  80. C.L. Johnson, E. Snoeck, M. Ezcurdia, B. Rodríguez-González, I. Pastoriza-Santos, L.M. Liz-Marzán, M.J. Hÿtch, Nat. Mater. 7 (2), 120 (2007).

    Google Scholar 

  81. A. Béché, J.L. Rouvière, J.P. Barnes, D. Cooper, Ultramicroscopy 131, 10 (2013).

    Google Scholar 

  82. A. Smolyanitsky, V.K. Tewary, Nanotechnology 22 (8), 085703 (2011).

    Google Scholar 

  83. A.U. Nilekar, J. Greeley, M. Mavrikakis, Angew. Chem. Int. Ed. Engl. 45 (42), 7046 (2006).

    Google Scholar 

  84. N. Schichtel, C. Korte, D. Hesseb, J. Janeka, Phys. Chem. Chem. Phys. 11, 3043 (2009).

    Google Scholar 

  85. Y. Xu, A.V. Ruban, M. Mavrikakis, J. Am. Chem. Soc. 126 (14), 4717 (2004).

    Google Scholar 

  86. M.M. Kuklja, E.A. Kotomin, R. Merkle, Y.A. Mastrikov, J. Maier, Phys. Chem. Chem. Phys. 15 (15), 5443 (2013).

    Google Scholar 

  87. U. Diebold, Surf. Sci. Rep. 48 (5–8), 53 (2003).

    Google Scholar 

  88. A. Kushima, S. Yip, B. Yildiz, Phys. Rev. B 82 (11), 115435 (2010).

    Google Scholar 

  89. Z. Cai, Y. Kuru, J.W. Han, Y. Chen, B. Yildiz, J. Am. Chem. Soc. 133 (44), 17696 (2011).

    Google Scholar 

  90. H. Jalili, J.W. Han, Y. Kuru, Z.H. Cai, B. Yildiz, J. Phys. Chem Lett. 2 (7), 801 (2011).

    Google Scholar 

  91. M. Kubicek, Z.H. Cai, W. Ma, B. Yildiz, H. Hutter, J. Fleig, ACS Nano 7 (4), 3276 (2013).

    Google Scholar 

  92. W.T. Hong, M. Gadre, Y.L. Lee, M.D. Biegalski, H.M. Christen, D. Morgan, Y. Shao-Horn, J. Phys. Chem Lett. 4 (15), 2493 (2013).

    Google Scholar 

  93. M. Pavone, A.M. Ritzmann, E.A. Carter, Energy Environ. Sci. 4 (12), 4933 (2011).

    Google Scholar 

  94. M. Mogensen, D. Lybye, N. Bonanos, P.V. Hendriksen, F.W. Poulsen, Elec. Soc. S2001 (28), 15 (2002).

  95. A.T. Motta, Jom-Us 63 (8), 63 (2011).

    Google Scholar 

  96. G.S. Was, D. Farkas, I.M. Robertson, Curr. Opin. Solid. St. M. 16 (3), 134 (2012).

    Google Scholar 

  97. T.X.T. Sayle, M. Cantoni, U.M. Bhatta, S.C. Parker, S.R. Hall, G. Mobus, M. Molinari, D. Reid, S. Seal, D.C. Sayle, Chem. Mater. 24 (10), 1811 (2012).

    Google Scholar 

  98. S.I. Cha, K.H. Hwang, Y.H. Kim, M.J. Yun, S.H. Seo, Y.J. Shin, J.H. Moon, D.Y. Lee, Nanoscale 5 (2), 753 (2013).

    Google Scholar 

  99. T. Zhu, J. Li, A. Samanta, A. Leach, K. Gall, Phys. Rev. Lett. 100 (2), 025502 (2008).

    Google Scholar 

  100. D. Rodney, L. Proville, Phys. Rev. B 79 (9), 094108 (2009).

    Google Scholar 

  101. Y. Fan, Y.N. Osetsky, S. Yip, B. Yildiz, Phys. Rev. Lett. 109 (13), 135503 (2012).

    Google Scholar 

  102. Y. Fan, Y. Osetsky, S. Yip, B. Yildiz, Proc. Natl. Acad. Sci. U.S.A. 2013, in print.

  103. K. Dorr, O. Bilani-Zeneli, A. Herklotz, A.D. Rata, K. Boldyreva, J.W. Kim, M.C. Dekker, K. Nenkov, L. Schultz, M. Reibold, Eur. Phys. J. B 71 (3), 361 (2009).

    Google Scholar 

Download references

Acknowledgments

B.Y. gratefully acknowledges support from the CAREER Award (“Stretching” Oxides to Low Temperature Transport and Reactivity) of the National Science Foundation, Division of Materials Research, Ceramics Program, Grant No.1055583, and the US Department of Energy - Basic Energy Sciences, Grant No. DE-SC0002633. B.Y. is also thankful to Manos Mavrikakis for his review and constructive comments on this article prior to publication. B.Y. thanks her students and post-docs, whose research results she synthesized into this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bilge Yildiz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yildiz, B. “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion. MRS Bulletin 39, 147–156 (2014). https://doi.org/10.1557/mrs.2014.8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.8

Navigation