Skip to main content
Log in

Advances in source technology for focused ion beam instruments

  • Focused Ion Beam Technology and Applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Owing to the development of new ion source technology, users of focused ion beams (FIBs) have access to superior performance when compared with the industry standard Ga+ liquid metal ion source. FIBs equipped with an inductively coupled plasma (ICP) ion source are better able to carry out large volume milling applications by providing up to 2 µA of Xe+ ions focused into a sub-5 µm spot. However, ICP FIBs are presently limited to 25 nm imaging resolution at 1 pA.The gas field ionization source (GFIS) relies upon an ion source that is the size of a single atom and correspondingly gains high brightness through its very small source size. The high brightness allows the GFIS to produce a very small focused probe size (<0.35 nm for helium), but with comparatively small beam currents (less than 2 pA). The Cs+ low temperature ion source, still being developed, has a projected sub-nm focal spot size at 1 pA, a maximum current of several nanoamps, and has the potential to offer integrated secondary ion mass spectrometry capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. R. Forbes, G.L.R. Mair, in Handbook of Charged Particle Optics, 2nd ed., J. Orloff, Ed. (CRC Press, New York, 2009).

  2. N. Smith, P. Tesch, N. Martin, D. Kinion, Appl. Surf. Sci. 255 (4), 1606 (2008).

    Google Scholar 

  3. N. Smith, P. Tesch, N. Martin, R. Boswell, Micros. Today 17 (5), 18 (2009).

    Google Scholar 

  4. A. Merkulov, P. Peres, J. Choi, F. Horreard, H.-U. Ehrke, N. Loibl, M. Schumacher, J. Vac. Sci. Technol. B 28, C1 (2010).

    Google Scholar 

  5. P. Hoppe, S. Cohen, A. Meibom, Geostand. Geoanal. Res. 37 (2), 111 (2013).

    Google Scholar 

  6. J. Druce, Kyushu University, personal communication.

  7. F. Altmann, S. Klengel, J. Schischka, M. Petzold, Proc. of 63rd Electronic Components and Technology Conference, ECTC, 1940 (Washington, DC, 2013).

  8. P. Tesch, N. Smith, N. Martin, D. Kinion, Proc. from the 34th International Symposium for Testing and Failure Analysis (ISTFA), 7 (2008).

  9. R. Hill, J. Notte, B. Ward, Phys. Procedia 1, 135 (2008).

    Google Scholar 

  10. B. Knuffman, A.V. Steele, J.J. McClelland, J. Appl. Phys. 114, 044303 (2013).

    Google Scholar 

  11. E.W. Muller, T.T. Tsong, Field Ion Microscopy Principles and Applications (American Elsevier, New York, 1969).

  12. N.P. Economou, J.A. Notte, W.B. Thompson, Scanning 34 (2), 83 (2012).

    Google Scholar 

  13. A.J. Melmed, Appl. Surf. Sci. 94/95, 17 (1996).

  14. R. Hill, J.A. Notte, L. Scipioni, in Advances in Imaging and Electron Physics, P.W. Hawkes, Ed. (Elsevier, New York, 2012), vol. 170, p. 65.

  15. J. Notte, Micros. Today 20 (5), 16 (2012).

    Google Scholar 

  16. H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, New York, 1999).

  17. B. Knuffman, A.V. Steele, J. Orloff, J.J. McClelland, New J. Phys. 13, 103035 (2011).

    Google Scholar 

  18. N. Debernardi, M.P. Reijnders, W.J. Engelen, T.T.J. Clevis, P.H.A. Mutsaers, O.J. Luiten, E.J.D. Vredenbregt, J. Appl. Phys. 110, 024501 (2011).

    Google Scholar 

  19. A.V. Steele, B. Knuffman, J.J. McClelland, J. Appl. Phys. 109, 104308 (2011).

    Google Scholar 

  20. P.W. Hawkes, E. Kasper, Principles of Electron Optics, Vol. 2 (Academic Press, San Diego, CA, 1996).

  21. F. Reif, Fundamentals of Statistical and Thermal Physics (Waveland Press, Long Grove, IL, 2009).

  22. S.B. van der Geer, M.P. Reijnders, M.J. deLoos, E.J.D. Vredenbregt, P.H.A. Mutsaers, O.J. Luiten, J. Appl. Phys. 102, 094312 (2007).

    Google Scholar 

  23. A.V. Steele, B. Knuffman, J.J. McClelland, J. Orloff, J. Vac. Sci. Technol. B 28, C6F1 (2010).

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Brenton Knuffman and Jabez McClelland for helpful discussions regarding development of the low-temperature ion source.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel S. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, N.S., Notte, J.A. & Steele, A.V. Advances in source technology for focused ion beam instruments. MRS Bulletin 39, 329–335 (2014). https://doi.org/10.1557/mrs.2014.53

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.53

Navigation