Skip to main content

Advertisement

Log in

Phase change materials and phase change memory

  • New Materials for Post-Si Computing
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Phase change memory (PCM) is an emerging technology that combines the unique properties of phase change materials with the potential for novel memory devices, which can help lead to new computer architectures. Phase change materials store information in their amorphous and crystalline phases, which can be reversibly switched by the application of an external voltage. This article describes the advantages and challenges of PCM. The physical properties of phase change materials that enable data storage are described, and our current knowledge of the phase change processes is summarized. Various designs of PCM devices with their respective advantages and integration challenges are presented. The scaling limits of PCM are addressed, and its performance is compared to competing existing and emerging memory technologies. Finally, potential new applications of phase change devices such as neuromorphic computing and phase change logic are outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. W.J. Gallagher, S.S.P. Parkin, IBM J. Res. Dev. 50, 5 (2006).

    Google Scholar 

  2. T. Kawahara, K. Ito, R. Takemura, H. Ohno, Microelectron. Reliab. 52, 613 (2012).

    Google Scholar 

  3. S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190 (2008).

    Google Scholar 

  4. H. Ishiwara, M. Okuyama, Y. Arimoto, Ferroelectric Random Access Memories: Fundamentals and Applications (Springer, New York, 2004).

    Google Scholar 

  5. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21, 2632 (2009).

    Google Scholar 

  6. D.B. Strukov, G.S. Snyder, D.R. Steward, R.S. Williams, Nature 453, 80 (2008).

    Google Scholar 

  7. M. Kund, G. Beitel, C.-U. Pinnow, T. Röhr, J. Schumann, R. Symanczyk, K.-D. Ufert, G. Müller, IEEE Int. Electron Dev. Mtg. 754 (Washington, DC, 2005).

  8. T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber, Science 7, 94 (2000).

    Google Scholar 

  9. J.B. Cui, R. Sordan, M. Burghard, K. Kern, Appl. Phys. Lett. 81, 3260 (2002).

    Google Scholar 

  10. S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.-C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam, IBM J. Res. Dev. 52, 465 (2008).

    Google Scholar 

  11. S.R. Ovshinsky, Phys. Rev. Lett. 22, 1450 (1968).

    Google Scholar 

  12. N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata, Jpn. J. Appl. Phys. 26 (Suppl. 26–4), 61 (1987).

    Google Scholar 

  13. S. Raoux, M. Wuttig, Phase Change Materials: Science and Application (Springer, New York, 2009).

  14. J.L.F.D. Silva, A. Walsh, H.L. Lee, Phys. Rev. B: Condens. Matter 78, 224111 (2008).

    Google Scholar 

  15. G. Servalli, IEEE Int. Electron Dev. Mtg. 113 (Washington, DC, 2009).

  16. D. Krebs, S. Raoux, C.T. Rettner, G.W. Burr, M. Salinga, M. Wuttig, Appl. Phys. Lett. 95, 082101 (2009).

    Google Scholar 

  17. Y.C. Chen, C.T. Rettner, S. Raoux, G.W. Burr, S.H. Chen, R.M. Shelby, M. Salinga, W. Risk, T.D. Happ, G.M. McClelland, M. Breitwisch, A. Schrott, J.B. Philipp, M.H. Lee, R. Cheek, T. Nirschl, M. Lamorey, C.F. Chen, E. Joseph, S. Zaidi, B. Yee, H.L. Lung, R. Bergmann, C. Lam, IEEE Int. Electron Dev. Mtg. 777 (San Francisco, CA, 2006).

  18. H.-Y. Cheng, S. Raoux, J.L. Jordan-Sweet, J. Appl. Phys. 115, 093101 (2014).

    Google Scholar 

  19. H.-Y. Cheng, T.H. Hsu, S. Raoux, J.Y. Wu, P.Y. Du, M. Breitwisch, Y. Zhu, E.K. Lai, E. Joseph, S. Mittal, R. Cheek, A. Schrott, S.C. Lai, H.L. Lung, C. Lam, IEEE Int. Electron Dev. Mtg. 3.4.1 (Washington, DC, 2011).

  20. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, New York, 1939).

    Google Scholar 

  21. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, M. Wuttig, Nat. Mater. 7, 653 (2008).

    Google Scholar 

  22. D. Lencer, M. Salinga, B. Grabowski, T. Hickel, J. Neugebauer, M. Wuttig, Nat. Mater. 7, 972 (2008).

    Google Scholar 

  23. J. Kalb, M. Wuttig, F. Spaepen, J. Mater. Res. 22, 748 (2007).

    Google Scholar 

  24. J. Orava, A.L. Greer, B. Gholipour, D.W. Hewak, C.E. Smith, Nat. Mater. 11, 279 (2012).

    Google Scholar 

  25. M. Salinga, E. Carria, A. Kaldenbach, M. Börnhöfft, J. Benke, J. Mayer, M. Wuttig, Nat. Commun. 4, 2371 (2013).

    Google Scholar 

  26. G. Bruns, P. Merkelbach, C. Schlockermann, M. Salinga, M. Wuttig, T.D. Happ, J.B. Philipp, M. Kund, Appl. Phys. Lett. 95, 043108 (2009).

    Google Scholar 

  27. W.J. Wang, L.P. Shi, R. Zhao, K.G. Lim, H.K. Lee, T.C. Chong, Y.H. Wu, Appl. Phys. Lett. 93, 043121 (2008).

    Google Scholar 

  28. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012).

    Google Scholar 

  29. D. Ielmini, Y. Zhang, J. Appl. Phys. 102, 054517 (2007).

    Google Scholar 

  30. A. Capelli, E. Piccinini, F. Xiong, A. Behnam, R. Brunetti, M. Rudan, E. Pop, C. Jacoboni, Appl. Phys. Lett. 103, 083503 (2013).

    Google Scholar 

  31. S. Tyson, G. Wicker, T. Lowrey, S. Hudgens, K. Hunt, Proc. IEEE Aerosp. Conf. 5, 385 (2000).

    Google Scholar 

  32. S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.O. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, B.I. Ryu, Symp. VLSI Technol. 96 (2005).

    Google Scholar 

  33. M. Breitwisch, T. Nirschl, C.F. Chen, Y. Zhu, M.H. Lee, M. Lamorey, G.W. Burr, E. Joseph, A. Schrott, J.B. Philipp, R. Cheek, T.D. Happ, S.H. Chen, S. Zaidi, P. Flaitz, J. Bruley, R. Dasaka, B. Rajendran, S. Rossnagel, M. Yang, Y.C. Chen, R. Bergmann, H.L. Lung, C. Lam, Symp. VLSI Technol. 6B-3 (2007).

    Google Scholar 

  34. P. Pavan, R. Bez, P. Olivo, E. Zanoni, Proc. IEEE 85, 1248 (1997).

    Google Scholar 

  35. G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, IBM J. Res. Dev. 52, 449 (2008).

    Google Scholar 

  36. H.Y. Cheng, M. BrightSky, S. Raoux, C.F. Chen, P.Y. Du, J.Y. Wu, Y.Y. Lin, T.H. Hsu, Y. Zhu, S. Kim, H.L. Lung, C. Lam, IEEE Int. Electron Dev. Mtg. 30.6.1 (Washington, DC, 2013).

  37. G. Navarro, M. Coue, A. Kiouseloglou, P. Noe, F. Fillot, V. Delaye, A. Persico, A. Roulle, M. Bernard, C. Sabbione, D. Blanchier, V. Sousa, L. Perniola, S. Maitrejean, A. Cabrini, G. Torelli, P. Zuliani, R. Annunziata, E. Palumbo, M. Borghi, G. Reimbold, B. De Salvo, IEEE Int. Electron Dev. Mtg. 21.5.1 (Washington, DC, 2013).

  38. H.-Y. Cheng, S. Raoux, K.V. Nguyen, R.S. Shenoy, M. BrightSky, Appl. Phys. Lett. in press (2014).

    Google Scholar 

  39. I.S. Kim, S.L. Cho, D.H. Im, E.H. Cho, D.H. Kim, G.H. Oh, D.H. Ahn, S.O. Park, S.W. Nam, J.T. Moon, C.H. Chung, Symp VLSI Technol. 203 (2010).

    Google Scholar 

  40. S. Raoux, R.M. Shelby, J. Jordan-Sweet, B. Munoz, M. Salinga, Y.-C. Chen, Y.-H. Shih, E.-K. Lai, M.-H. Lee, Microelectron. Eng. 85, 2330 (2008).

    Google Scholar 

  41. M.A. Caldwell, S. Rauox, R.Y. Wang, H.-S.P. Wong, D.J. Milliron, J. Mater. Chem. 20, 1285 (2010).

    Google Scholar 

  42. H.F. Hamann, M. O’Boyle, Y.C. Martin, M. Rooks, K. Wickramasinghe, Nat. Mater. 5, 383 (2006).

    Google Scholar 

  43. H. Satoh, K. Sugawara, K. Tanaka, J. Appl. Phys. 99, 2 (2006).

    Google Scholar 

  44. F. Xiong, A. Liao, E. Pop, Appl. Phys. Lett. 95, 243103 (2009).

    Google Scholar 

  45. T. Gotoh, K. Sugawara, K. Tanaka, J. Appl. Phys. 43, L818 (2004).

    Google Scholar 

  46. S. Raoux, J.L. Jordan-Sweet, A.J. Kellock, J. Appl. Phys. 103, 114310 (2008).

    Google Scholar 

  47. D.S. Suh, E. Lee, K.H.P. Kim, J.S. Noh, W.C. Shin, Y.S. Kang, C. Kim, Y. Khang, H.R. Yoon, W. Jo, Appl. Phys. Lett. 90, 2 (2007).

    Google Scholar 

  48. H.S. Choi, K.S. Seol, K. Takeuchi, J. Fujita, Y. Ohki, J. Appl. Phys. 44, 7720 (2005).

    Google Scholar 

  49. S. Raoux, H.-Y. Cheng, J.L. Jordan-Sweet, B. Munoz, M. Hitzbleck, Appl. Phys. Lett. 94, 183144 (2009).

    Google Scholar 

  50. S.H. Lee, D.K. Ko, Y. Jung, R. Agarwal, Appl. Phys. Lett. 89, 22 (2006).

    Google Scholar 

  51. D. Yu, S. Brittman, J.S. Lee, A.L. Falk, H. Park, Nano Lett. 8, 3429 (2008).

    Google Scholar 

  52. J. Liu, M.P. Anantram, J. Appl. Phys. 113, 063711 (2013).

    Google Scholar 

  53. X.H. Sun, B. Yu, G. Ng, T.D. Nguyen, M. Meyyappan, Appl. Phys. Lett. 89, 23 (2006).

    Google Scholar 

  54. X.H. Sun, B. Yu, G. Ng, M. Meyyappan, J. Phys. Chem. C 111, 2421 (2007).

    Google Scholar 

  55. G.W. Burr, M.J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L.A. Lastras, A. Padilla, B. Rajendran, S. Raoux, R.S. Shenoy, J. Vac. Sci. Technol. B 28, 223 (2010).

    Google Scholar 

  56. J.P. Reifenberg, M.A. Panzer, S. Kim, A.M. Gibby, Y. Zhang, S. Wong, H.-S. P. Wong, E. Pop, K.E. Goodson, Appl. Phys. Lett. 91, 111904 (2007).

    Google Scholar 

  57. D. Roy, M.A.A. Zandt, R.A.M. Wolters, IEEE Electron Devices Lett. 31, 1293 (2010).

    Google Scholar 

  58. F. Xiong, A.D. Liao, D. Estrada, E. Pop, Science 332, 568 (2011).

    Google Scholar 

  59. F. Xiong, M.H. Bae, Y. Dai, A.D. Liao, A. Behnam, E.A. Carrion, S. Hong, D. Ielmini, E. Pop, Nano Lett. 13, 464 (2013).

    Google Scholar 

  60. T. Nirschl, J.B. Philipp, T.D. Happ, G.W. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M. Yang, M. Breitwisch, C.-F. Chen, E. Joseph, M. Lamorey, R. Cheek, S.-H. Chen, S. Zaidi, S. Raoux, Y.C. Chen, Y. Zhu, R. Bergmann, H.-L. Lung, C. Lam, IEEE Int. Electron Dev. Mtg. 461 (Washington, DC, 2007).

  61. A. Pirovano, A.L. Lacaita, A. Benvenuti, F. Pellizzer, S. Hudgens, R. Bez, IEEE Int. Electron Dev. Mtg. 699 (Washington, DC, 2003).

  62. D.H. Im, J.I. Lee, S.L. Cho, H.G. An, D.H. Kim, I.S. Kim, H. Park, D.H. Ahn, H. Horii, S.O. Park, U.-I. Chung, J.T. Moon, IEEE Int. Electron Dev. Mtg. 211 (San Francisco, CA, 2008).

  63. M.J. Kang, T.J. Park, Y.W. Kwon, D.-H. Ahn, Y.S. Kang, H.-S. Jeong, S.-J. Ahn, Y.J. Song, B.C. Kim, S.-W. Nam, H.-K. Kang, G.-T. Jeong, C.-H. Chung, IEEE Int. Electron Dev. Mtg. (IEDM), 39 (2011).

    Google Scholar 

  64. H.-S.P. Wong, S. Raoux, S.B. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E. Goodson, Proc. IEEE 98, 2201 (2010).

    Google Scholar 

  65. J.L. Liang, R.G.D. Jeyasingh, H.Y. Chen, H.-S.P. Wong, IEEE Trans. Electron Devices 59, 1155 (2012).

    Google Scholar 

  66. E. Bozorg-Grayeli, Annu. Rev. Heat Transfer 16, 397 (2013).

    Google Scholar 

  67. C. Kim, D.-S. Suh, K.H.P. Kim, Y.-S. Kang, T.-Y. Lee, Y. Khang, D.G. Cahill, Appl. Phys. Lett. 92, 013109 (2008).

    Google Scholar 

  68. A. Redaelli, A. Pirovano, A. Benvenuti, A.L. Lacaita, J. Appl. Phys. 103, 111101 (2008).

    Google Scholar 

  69. A.L. Lacaita, A. Redaelli, Microelectron. Eng. 109, 351 (2013).

    Google Scholar 

  70. B.L. Jackson, B. Rajendran, G.S. Corrado, M. Breitwisch, G.W. Burr, R. Cheek, K. Gopalakrishnan, S. Raoux, C.T. Rettner, A. Padilla, A.G. Schrott, R.S. Shenoy, B.N. Kurdi, C.H. Lam, D.S. Modha, ACM J. Emerg. Technol. 9, 12 (2013).

    Google Scholar 

  71. M. Suri, O. Bichler, D. Querlioz, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, B. De Salvo, IEEE Int. Electron Dev. Mtg. 4.4.1 (Washington, DC, 2011).

  72. D. Kuzum, R.G.D. Jeyasingh, B. Lee, H.-S.P. Wong, Nano Lett. 12, 2179 (2012).

    Google Scholar 

  73. M. Suri, O. Bichler, D. Querlioz, B. Traor, O. Cueto, L. Perniola, V. Sousa, D. Vuillaume, C. Gamrat, B. De Salvo, J. Appl. Phys. 112, 054904 (2012).

    Google Scholar 

  74. D.-S. Suh, C. Kim, K.H.P. Kim, Y.-S. Kang, T.-Y. Lee, Y. Khang, T.S. Park, Y.-G. Yoon, J. Im, J. Ihm, Appl. Phys. Lett. 96, 123115 (2010).

    Google Scholar 

  75. T. Rosenthal, M.N. Schneider, C. Stiewe, D. Markus, O. Oeckler, Chem. Mater. 23, 4349 (2011).

    Google Scholar 

  76. E. Bozorg-Grayeli, J.P. Reifenberg, M. Asheghi, H.-S.P. Wong, K.E. Goodson, Annu. Rev. Heat Transfer 15, 1437 (2012).

    Google Scholar 

  77. K.L. Grosse, F. Xiong, S. Hong, W.P. King, E. Pop, Appl. Phys. Lett. 102, 193503 (2013).

    Google Scholar 

  78. E.-R. Sittner, K.S. Siegert, P. Jost, C. Schlockermann, F.R. Lange, M. Wuttig, Phys. Status Solidi 210, 147 (2013).

    Google Scholar 

  79. J. Lee, M. Asheghi, K.E. Goodson, Nanotechnology 23, 205201 (2012).

    Google Scholar 

Download references

Acknowledgments

M.W. gratefully acknowledges funding within SFB 917 (“Nanoswitches”) and by the ERC (“Disorder Control”). F.X. and E.P. acknowledge support from the US National Science Foundation (NSF) grant ECCS 1002026 and from the US Office of Naval Research (ONR) grant N00014 101–0853.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simone Raoux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raoux, S., Xiong, F., Wuttig, M. et al. Phase change materials and phase change memory. MRS Bulletin 39, 703–710 (2014). https://doi.org/10.1557/mrs.2014.139

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2014.139

Navigation