Skip to main content
Log in

Paper-based electroanalytical devices for accessible diagnostic testing

  • Paper-based technology
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Microfluidic paper-based analytical devices (μPADs) use the passive capillary-driven flow of aqueous solutions through patterned paper channels to transport a sample fluid into distinct detection zones that contain the reagents for a chemical assay. These devices are simple, affordable, portable, and disposable; they are, thus, well suited for diagnostic applications in resource-limited environments. Adding screen-printed electrodes to the detection zones of a μPAD yields a device capable of performing electrochemical assays (an EμPAD). Electrochemical detection has the advantage over colorimetric detection that it is not affected by interference from the color of the sample and can be quantified with simple electronics. The accessibility of EμPADs, however, is limited by the requirement for an external potentiostat to power and interpret the electrochemical measurement. New developments in paper-based electronics may help loosen this requirement. This review discusses the current capabilities and limitations of EμPADs and paper-based electronics, and sketches the ways in which these technologies can be combined to provide new devices for diagnostic testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. A.W. Martinez, S.T. Phillips, G.M. Whitesides, E. Carrilho, Anal. Chem. 82, 3 (2009).

    Article  CAS  Google Scholar 

  2. E. Fu, T. Liang, P. Spicar-Mihalic, J. Houghtaling, S. Ramachandran, P. Yager, Anal. Chem. 84, 4574 (2012).

    Article  CAS  Google Scholar 

  3. M.S. Khan, G. Thouas, W. Shen, G. Whyte, G. Garnier, Anal. Chem. 82, 4158 (2010).

    Article  CAS  Google Scholar 

  4. W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chim. Acta 674, 227 (2010).

    Article  CAS  Google Scholar 

  5. Urinalysis: TheChemical Examination, http://labtestsonline.org/understanding/analytes/urinalysis/ui-exams/start/1 (accessed October 3, 2012).

  6. B. O’Farrell, in Lateral Flow Immunoassay, R. Wong, H. Tse, Eds. (Humana Press, New York, 2009).

  7. A. Martinez, S. Phillips, M. Butte, G. Whitesides, Angew. Chem. Int. Ed. 46, 1318 (2007).

    Article  CAS  Google Scholar 

  8. D.A. Bruzewicz, M. Reches, G.M. Whitesides, Anal. Chem. 80, 3387 (2008).

    Article  CAS  Google Scholar 

  9. J. Olkkonen, K. Lehtinen, T. Erho, Anal. Chem. 82, 10246 (2010).

    Article  CAS  Google Scholar 

  10. Y. Lu, W. Shi, L. Jiang, J. Qin, B. Lin, Electrophoresis 30, 1497 (2009).

    Article  CAS  Google Scholar 

  11. E. Carrilho, A.W. Martinez, G.M. Whitesides, Anal. Chem. 81, 7091 (2009).

    Article  CAS  Google Scholar 

  12. A.W. Martinez, S.T. Phillips, G.M. Whitesides, PNAS 105, 19606 (2008).

    Article  CAS  Google Scholar 

  13. J. Lu, S. Ge, L. Ge, M. Yan, J. Yu, Electrochim. Acta 80, 334 (2012).

    Article  CAS  Google Scholar 

  14. H. Liu, Y. Xiang, Y. Lu, R.M. Crooks, Angew. Chem. 124, 7031 (2012).

    Article  Google Scholar 

  15. A.W. Martinez, S.T. Phillips, E. Carrilho, S.W. Thomas, H. Sindi, G.M. Whitesides, Anal. Chem. 80, 3699 (2008).

    Article  CAS  Google Scholar 

  16. P. D’Orazio, Clin. Chim. Acta 334, 41 (2003).

    Article  CAS  Google Scholar 

  17. http://www.abbottpointofcare.com.

  18. G.F. Blackburn, H.P. Shah, J.H. Kenten, J. Leland, R.A. Kamin, J. Link, J. Peterman, M.J. Powell, A. Shah, D.B. Talley, Clin. Chem. 37, 1534 (1991).

    Article  CAS  Google Scholar 

  19. Z. Nie, C.A. Nijhuis, J. Gong, X. Chen, A. Kumachev, A.W. Martinez, M. Narovlyansky, G.M. Whitesides, Lab Chip 10, 477 (2010).

    Article  CAS  Google Scholar 

  20. W. Dungchai, O. Chailapakul, C.S. Henry, Anal. Chem. 81, 5821 (2009).

    Article  CAS  Google Scholar 

  21. G. Cui, S.J. Kim, S.H. Choi, H. Nam, G.S. Cha, K.-J. Paeng, Anal. Chem. 72, 1925 (2000).

    Article  CAS  Google Scholar 

  22. Z. Nie, F. Deiss, X. Liu, O. Akbulut, G.M. Whitesides, Lab Chip 10, 3163 (2010).

    Article  CAS  Google Scholar 

  23. J. Lankelma, Z. Nie, E. Carrilho, G.M. Whitesides, Anal. Chem. 84, 4147 (2012).

    Article  CAS  Google Scholar 

  24. H. Liu, R.M. Crooks, Anal. Chem. 84, 2528 (2012).

    Article  CAS  Google Scholar 

  25. J.G. Osteryoung, R.A. Osteryoung, Anal. Chem. 57, 101A (1985).

    Article  CAS  Google Scholar 

  26. D. Du, J. Wang, L. Wang, D. Lu, Y. Lin, Anal. Chem. 84, 1380 (2012).

    Article  CAS  Google Scholar 

  27. L. Wang, D. Lu, J. Wang, D. Du, Z. Zou, H. Wang, J.N. Smith, C. Timchalk, F. Liu, Y. Lin, Biosens. Bioelectron. 26, 2835 (2010).

    Article  CAS  Google Scholar 

  28. G. Liu, Y.-Y. Lin, J. Wang, H. Wu, C.M. Wai, Y. Lin, Anal. Chem. 79, 7644 (2007).

    Article  CAS  Google Scholar 

  29. K.S. Lee, T.-H. Kim, M.-C. Shin, W.-Y. Lee, J.-K. Park, Anal. Chim. Acta 380, 17 (1999).

    Article  CAS  Google Scholar 

  30. M. Yan, D. Zang, S. Ge, L. Ge, J. Yu, Biosens. Bioelectron. 38, 355 (2012).

    Article  CAS  Google Scholar 

  31. P. Wang, L. Ge, M. Yan, X. Song, S. Ge, J. Yu, Biosens. Bioelectron. 32, 238 (2011).

    Article  CAS  Google Scholar 

  32. K.K. Jagadeesan, S. Kumar, G. Sumana, Electrochem. Commun. 20, 71 (2012).

    Article  CAS  Google Scholar 

  33. A.C. Siegel, S.T. Phillips, M.D. Dickey, N. Lu, Z. Suo, G.M. Whitesides, Adv. Funct. Mater.20, 28 (2010).

    Article  CAS  Google Scholar 

  34. X. Liu, M. Mwangi, X. Li, M. O’Brien, G.M. Whitesides, Lab Chip 11, 2189 (2011).

    Article  CAS  Google Scholar 

  35. O.D. Renedo, M.A. Alonso-Lomillo, M.J.A. Martinez, Talanta 73, 202 (2007).

    Article  CAS  Google Scholar 

  36. S.A. Wring, J.P. Hart, L. Bracey, B.J. Birch, Anal. Chim. Acta 231, 203 (1990).

    Article  CAS  Google Scholar 

  37. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, J.A. Lewis, Adv. Mater.23, 3426 (2011).

    Article  CAS  Google Scholar 

  38. K.A. Mirica, J.G. Weis, J.M. Schnorr, B. Esser, T.M. Swager, Angew. Chem. Int. Ed. 51, 10740 (2012).

    Article  CAS  Google Scholar 

  39. A.C. Siegel, S.T. Phillips, B.J. Wiley, G.M. Whitesides, Lab Chip 9, 2775 (2009).

    Article  CAS  Google Scholar 

  40. A.D. Mazzeo, W.B. Kalb, L. Chan, M.G. Killian, J.-F. Bloch, B.A. Mazzeo, G.M. Whitesides, Adv. Mater. 24, 2850 (2012).

    Article  CAS  Google Scholar 

  41. F. Eder, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, C. Dehm, Appl. Phys. Lett. 84, 2673 (2004).

    Article  CAS  Google Scholar 

  42. E. Fortunato, N. Correia, P. Barquinha, L. Pereira, G. Goncalves, R. Martins, IEEE Electron Device Lett. 29, 988 (2008).

    Article  Google Scholar 

  43. R. Martins, P. Barquinha, L. Pereira, N. Correia, G. Gonçalves, I. Ferreira, E. Fortunato, Appl. Phys. Lett. 93, 203501 (2008).

    Article  CAS  Google Scholar 

  44. R. Martins, A. Nathan, R. Barros, L. Pereira, P. Barquinha, N. Correia, R. Costa, A. Ahnood, I. Ferreira, E. Fortunato, Adv. Mater. 23, 4491 (2011).

    Article  CAS  Google Scholar 

  45. S. Yun,S.-D.Jang, G.-Y. Yun, J.-H. Kim, J. Kim,Appl. Phys. Lett. 95, 104102 (2009).

    Article  CAS  Google Scholar 

  46. D. Nilsson, T. Kugler, P.-O. Svensson, M. Berggren, Sens. Actuators, B 86, 193 (2002).

    Article  CAS  Google Scholar 

  47. http://www.digikey.com.

  48. Z. Weng, Y. Su, D.-W. Wang, F. Li, J. Du, H.-M. Cheng, Adv. Energy Mater. 1, 917 (2011).

    Article  CAS  Google Scholar 

  49. M. Hilder, B. Winther-Jensen, N.B. Clark, J. Power Sources 194, 1135 ( 2009 ).

    Article  CAS  Google Scholar 

  50. L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, ACS Nano 4, 5843 (2010).

    Article  CAS  Google Scholar 

  51. G. Nyström, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Nano Lett. 9, 3635 (2009).

    Article  CAS  Google Scholar 

  52. M.C. Barr, J.A. Rowehl, R.R. Lunt, J. Xu, A. Wang, C.M. Boyce, S.G. Im, V. Bulović, K.K. Gleason, Adv. Mater. 23, 3500 (2011).

    Article  CAS  Google Scholar 

  53. J. Wang, Chem. Rev. 108, 814 (2007).

    Article  CAS  Google Scholar 

  54. J.M. Ruano-Lopez, M. Agirregabiria, G. Olabarria, D. Verdoy, D.D. Bang M. Bu, A. Wolff, A. Voigt, J.A. Dziuban, R. Walczak, J. Berganzo, Lab Chip 9, 1495 (2009).

    Article  CAS  Google Scholar 

  55. http://www.anywherescience.com.

  56. https://itunes.apple.com/us/app/imultimeter/id420797671?mt=8.

  57. M. Novell, M. Parrilla, G.A. Crespo, F.X. Rius, F.J. Andrade, Anal. Chem. 84, 4695 (2012).

    Article  CAS  Google Scholar 

  58. J.L. Delaney, C.F. Hogan, J. Tian, W. Shen, Anal. Chem. 83, 1300 (2011).

    Article  CAS  Google Scholar 

  59. L. Ge, J. Yan, X. Song, M. Yan, S. Ge, J. Yu, Biomaterials 33, 1024 (2011).

    Article  CAS  Google Scholar 

  60. C.D. Chin, V. Linder, S.K. Sia, Lab Chip 7, 41 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Bill and Melinda Gates Foundation under award number 51308, the N/MEMS S&T Fundamentals MF3 Center (DARPA), and by a postdoctoral fellowship from the Natural Sciences and Engineering Research Council of Canada (E.J.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Jane Maxwell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maxwell, E.J., Mazzeo, A.D. & Whitesides, G.M. Paper-based electroanalytical devices for accessible diagnostic testing. MRS Bulletin 38, 309–314 (2013). https://doi.org/10.1557/mrs.2013.56

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.56

Navigation