Skip to main content
Log in

Magnetic field-directed self-assembly of magnetic nanoparticles

  • Magnetic Nanoparticles
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

This article reviews the principles of magnetic field-directed self-assembly (MFDSA) of magnetic nanoparticles (MNPs), along with recent studies that advance the fundamental understanding and potential capabilities of MNP MFDSA. This technology could eventually find application in manufacturing novel materials and components for biomedicine, energy, optics, functional composites, and microfluidics. In MFDSA, an externally applied field drives the assembly of MNPs. Uniform fields can create complex chains of MNPs, while inhomogeneous fields (such as those created by permanent magnets) apply attractive forces to MNPs that pull them toward the region of strongest field strength. Thus, MNPs can be self-organized as well as directed into user-designed patterns by controlling the external field arrangement. Because of its biocompatibility, nanoscale resolution, and low cost, MFDSA is a highly versatile technique that could enable high volume nanomanufacturing of MNPs into complex, finished materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. G.M. Whitesides, B. Grzybowski, Science 295, 2418 (2002).

    Google Scholar 

  2. J.A.A.W. Elemans, A.E. Rowan, R.J.M. Nolte, J. Mater. Chem. 13, 2661 (2003).

    Google Scholar 

  3. E. Winfree, F. Liu, L.A. Wenzler, N.C. Seeman, Nature 394, 539 (1998).

    Google Scholar 

  4. P.W.K. Rothemund, Nature 440, 297 (2006).

    Google Scholar 

  5. K.J.M. Bishop, C.E. Wilmer, S. Soh, B.A. Grzybowski, Small 5, 1600 (2009).

    Google Scholar 

  6. T.L. Gilbert, IEEE Trans. Magn. 40, 3443 (2004).

    Google Scholar 

  7. J.R. Reitz, F.J. Milford, R.W. Christy, Foundations of Electromagnetic Theory (3rd edition) (Addison-Wesley, NY, 1980).

    Google Scholar 

  8. K.L. Krycka, R.A. Booth, C.R. Hogg, Y. Ijiri, J.A. Borchers, W.C. Chen, S.M. Watson, M. Laver, T.R. Gentile, L.R. Dedon, S. Harris, J.J. Rhyne, S.A. Majetich, Phys. Rev. Lett. 104, 207203 (2010).

    Google Scholar 

  9. B.D. Cullity, Introduction to Magnetic Materials (Addison-Wesley, NY, 1972).

    Google Scholar 

  10. S.X. Wang, A. Taratorin, Magnetic Information Storage Technology (Academic Press, San Diego, 1999).

    Google Scholar 

  11. J. Lim, D.X. Tan, F. Lanni, R.D. Tilton, S.A. Majetich, J. Magn. Magn. Mater. 321, 1557 (2009).

    Google Scholar 

  12. R. Gerber, M. Takayasu, F.J. Friedlaender, IEEE Trans. Magn. 19, 2115 (1983).

    Google Scholar 

  13. R. Gerber, IEEE Trans. Magn. 20, 1159 (1984).

    Google Scholar 

  14. M. Takayasu, R. Gerber, F.J. Friedlaender, IEEE Trans. Magn. 19, 2112 (1983).

    Google Scholar 

  15. E.P. Furlani, J. Appl. Phys. 99, 024912 (2006).

    Google Scholar 

  16. J. Liu, E.M. Lawrence, A. Wu, M.L. Ivey, G.A. Flores, K. Javier, J. Bibette, J. Richard, Phys. Rev. Lett. 74, 2828 (1995).

    Google Scholar 

  17. S.L. Tripp, S.V. Pusztay, A.E. Ribbe, A. Wei, J. Am. Chem. Soc. 124, 7914 (2002).

    Google Scholar 

  18. H. Wang, Q.-W. Chen, Y.-B. Sun, M.-S. Wang, L.-X. Sun, W.-S. Yan, Langmuir 26, 5957 (2010).

    Google Scholar 

  19. J.R. Thomas, J. Appl. Phys. 37, 2914 (1966).

    Google Scholar 

  20. K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege, A.P. Philipse, Nat. Mater. 2, 88 (2003).

    Google Scholar 

  21. B.D. Korth, P. Keng, I. Shim, S.E. Bowles, C. Tang, T. Kowalewski, K.W. Nebesny, J. Pyun, J. Am. Chem. Soc. 128, 6562 (2006).

    Google Scholar 

  22. M. Klokkenburg, B.H. Erné, J.D. Meeldijk, A. Wiedenmann, A.V. Petukhov, R.P.A. Dullens, A.P. Philipse, Phys. Rev. Lett. 97, 185702 (2006).

    Google Scholar 

  23. P.Y. Keng, I. Shim, B.D. Korth, J.F. Douglas, J. Pyun, ACS Nano 1, 279 (2007).

    Google Scholar 

  24. D. Faivre, D. Schüler, Chem. Rev. 108, 4875 (2008).

    Google Scholar 

  25. R.P. Blakemore, Annu. Rev. Microbiol. 36, 217 (1982).

    Google Scholar 

  26. M. Wang, L. He, Y. Yin, Mater. Today 16, 110 (2013).

    Google Scholar 

  27. X. Xu, G. Friedman, K.D. Humfeld, S.A. Majetich, S.A. Asher, Adv. Mater. 13, 1681 (2001).

    Google Scholar 

  28. X. Xu, G. Friedman, K.D. Humfeld, S.A. Majetich, S.A. Asher, Chem. Mater. 14, 1249 (2001).

    Google Scholar 

  29. Y. Lalatonne, L. Motte, V. Russier, A.T. Ngo, P. Bonville, M.P. Pileni, J. Phys. Chem. B 108, 1848 (2004).

    Google Scholar 

  30. J. Ge, Y. Hu, Y. Yin, Angew. Chem. Int. Ed. 46, 7428 (2007).

    Google Scholar 

  31. J. Lin, W. Zhou, A. Kumbhar, J. Wiemann, J. Fang, E.E. Carpenter, C.J. O’Connor, J. Solid State Chem. 159, 26 (2001).

    Google Scholar 

  32. M. Hilgendorff, B. Tesche, M. Giersig, Aust. J. Chem. 54, 497 (2001).

    Google Scholar 

  33. M.-P. Pileni, Adv. Funct. Mater. 11, 323 (2001).

    Google Scholar 

  34. Y. Sahoo, M. Cheon, S. Wang, H. Luo, E.P. Furlani, P.N. Prasad, J. Phys. Chem. B 108, 3380 (2004).

    Google Scholar 

  35. J.I. Park, Y.W. Jun, J.S. Choi, J. Cheon, Chem. Commun. 5001 (2007).

  36. W.X. Fang, Z.-H. He, X.-Q. Xu, Z.-Q. Mao, H. Shen, Europhys. Lett. 77, 68004 (2007).

    Google Scholar 

  37. E. Alphandéry, Y. Ding, A.T. Ngo, Z.L. Wang, L.F. Wu, M.P. Pileni, ACS Nano 3, 1539 (2009).

    Google Scholar 

  38. K. Nakata, Y. Hu, O. Uzun, O. Bakr, F. Stellacci, Adv. Mater. 20, 4294 (2008).

    Google Scholar 

  39. D. Fragouli, R. Buonsanti, G. Bertoni, C. Sangregorio, C. Innocenti, A. Falqui, D. Gatteschi, P.D. Cozzoli, A. Athanassiou, R. Cingolani, ACS Nano 4, 1873 (2010).

    Google Scholar 

  40. K.E. Roskov, J.E. Atkinson, L.M. Bronstein, R.J. Spontak, RSC Adv. 2, 4603 (2012).

    Google Scholar 

  41. M. Motornov, S.Z. Malynych, D.S. Pippalla, B. Zdyrko, H. Royter, Y. Roiter, M. Kahabka, A. Tokarev, I. Tokarev, E. Zhulina, K.G. Kornev, I. Luzinov, S. Minko, Nano Lett. 12, 3814 (2012).

    Google Scholar 

  42. S. Ghosh, I.K. Puri, Soft Matter 9, 2024 (2013).

    Google Scholar 

  43. P.J. Krommenhoek, J.B. Tracy, Part. Part. Syst. Char. 30, 759 (2013).

    Google Scholar 

  44. R.M. Erb, R. Libanori, N. Rothfuchs, A.R. Studart, Science 335, 199 (2012).

    Google Scholar 

  45. S. Srivastava, N.A. Kotov, Soft Matter 5, 1146 (2009).

    Google Scholar 

  46. Z. Tang, N.A. Kotov, Adv. Mater. 17, 951 (2005).

    Google Scholar 

  47. V. Raman, A. Bose, B.D. Olsen, T.A. Hatton, Macromolecules 45, 9373 (2012).

    Google Scholar 

  48. M. Gopinadhan, P.W. Majewski, E.S. Beach, C.O. Osuji, ACS Macro Lett. 1, 184 (2011).

    Google Scholar 

  49. J. Ge, Y. Hu, M. Biasini, W.P. Beyermann, Y. Yin, Angew. Chem. Int. Ed. 46, 4342 (2007).

    Google Scholar 

  50. L. He, M. Wang, J. Ge, Y. Yin, Acc. Chem. Res. 45, 1431 (2012).

    Google Scholar 

  51. J. Bibette, J. Magn. Magn. Mater. 122, 37 (1993).

    Google Scholar 

  52. F.L. Calderon, T. Stora, O. Mondain Monval, P. Poulin, J. Bibette, Phys. Rev. Lett. 72, 2959 (1994).

    Google Scholar 

  53. R. Xuan, Q. Wu, Y. Yin, J. Ge, J. Mater. Chem. 21, 3672 (2011).

    Google Scholar 

  54. J. Kim, S.E. Chung, S.-E. Choi, H. Lee, J. Kim, S. Kwon, Nat. Mater. 10, 747 (2011).

    Google Scholar 

  55. L.N. Kim, E.G. Kim, J. Kim, S.E. Choi, W. Park, S. Kwon, Bull. Korean Chem. Soc. 33, 3735 (2012).

    Google Scholar 

  56. P.Y. Keng, M.M. Bull, I.-B. Shim, K.G. Nebesny, N.R. Armstrong, Y. Sung K. Char, J. Pyun, Chem. Mater. 23, 1120 (2011).

    Google Scholar 

  57. B.Y. Kim, I.-B. Shim, Z.O. Araci, S.S. Saavedra, O.L.A. Monti, N.R. Armstrong, R. Sahoo, D.N. Srivastava, J. Pyun, J. Am. Chem. Soc. 132, 3234 (2010).

    Google Scholar 

  58. J.C. Love, A.R. Urbach, M.G. Prentiss, G.M. Whitesides, J. Am. Chem. Soc. 125, 12696 (2003).

    Google Scholar 

  59. Y. Vasquez, A.E. Henkes, J.C. Bauer, R.E. Schaak, J. Solid State Chem. 181, 1509 (2008).

    Google Scholar 

  60. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes, G.A. Somorjai, A.P. Alivisatos, Science 304, 711 (2004).

    Google Scholar 

  61. S.L. Saville, R.C. Woodward, M.J. House, A. Tokarev, J. Hammers, B. Qi, J. Shaw, M. Saunders, R.R. Varsani, T.G. St. Pierre, O.T. Mefford, Nanoscale 5, 2152 (2013).

    Google Scholar 

  62. F. Lacharme, C. Vandevyver, M.A.M. Gijs, Anal. Chem. 80, 2905 (2008).

    Google Scholar 

  63. M.A.M. Gijs, F. Lacharme, U. Lehmann, Chem. Rev 110, 1518 (2009).

    Google Scholar 

  64. C.-H. Chang, C.-W. Tan, J. Miao, G. Barbastathis, Nanotechnology 20, 495301 (2009).

    Google Scholar 

  65. B.B. Yellen, G. Friedman, A. Feinerman, J. Appl. Phys. 91, 8552 (2002)

    Google Scholar 

  66. B.B. Yellen, G. Friedman, A. Feinerman, J. Appl. Phys. 93, 7331 (2003)

    Google Scholar 

  67. B.B. Yellen, G. Friedman, J. Appl. Phys. 93, 8447 (2003).

    Google Scholar 

  68. B.B. Yellen, G. Friedman, Adv. Mater.16, 111 (2004).

    Google Scholar 

  69. B.B. Yellen, G. Friedman, Langmuir 20, 2553 (2004).

    Google Scholar 

  70. L.E. Helseth, Th.M. Fischer, T.H. Johansen, J. Magn. Magn. Mater. 277, 245 (2004).

    Google Scholar 

  71. K. Gunnarsson, P.E. Roy, S. Felton, J. Pihl, P. Svedlindh, S. Berner, H. Lidbaum, S. Oscarsson, Adv. Mater. 17, 1730 (2005).

    Google Scholar 

  72. B.B. Yellen, O. Hovorka, G. Friedman, Proc. Natl. Acad. Sci. U.S.A. 102, 8860 (2005).

    Google Scholar 

  73. B.B. Yellen, R.M. Erb, D.S. Halverson, O. Hovorka, G. Friedman, IEEE Trans. Magn. 42, 3548 (2006).

    Google Scholar 

  74. R.M. Erb, H.S. Son, B. Samanta, V.M. Rotello, B.B. Yellen, Nature 457, 999 (2009).

    Google Scholar 

  75. R.M. Erb, M.D. Krebs, E. Alsberg, B. Samanta, V.M. Rotello, B.B. Yellen Phys. Rev E 80, 051402 (2009).

    Google Scholar 

  76. M.D. Krebs, R.M. Erb, B.B. Yellen, B. Samanta, A. Bajaj, V.M. Rotello, E. Alsberg, Nano Lett. 9, 1812 (2009).

    Google Scholar 

  77. K.S. Khalil, A. Sagastegui, Y. Li, M.A. Tahir, J.E.S. Socolar, B.J. Wiley, B.B. Yellen, Nat. Commun. 3, 794 (2012).

    Google Scholar 

  78. J.R. Henderson, T.M. Crawford, J. Appl. Phys. 109, 07D329 (2011).

    Google Scholar 

  79. J. Henderson, S. Shi, S. Cakmaktepe, T.M. Crawford, Nanotechnology 23, 185304 (2012).

    Google Scholar 

  80. L. Ye, B. Terry, O.T. Mefford, C. Rinaldi, T.M. Crawford, Opt. Express 21 1066 (2013).

    Google Scholar 

  81. F. Bitter, Phys. Rev 38, 1903 (1931).

    Google Scholar 

  82. S. Porthun, P. ten Berge, J.C. Lodder, J. Magn. Magn. Mater. 123, 199 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph B. Tracy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tracy, J.B., Crawford, T.M. Magnetic field-directed self-assembly of magnetic nanoparticles. MRS Bulletin 38, 915–920 (2013). https://doi.org/10.1557/mrs.2013.233

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.233

Navigation