Skip to main content
Log in

Protic ionic liquids: Fuel cell applications

  • Ionic liquids for energy applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

We have investigated protic ionic liquids (PILs) as proton conductors for non-humidified intermediate-temperature fuel cells. PILs exhibit proton conductivity and activity in fuel cell electrode reactions, as seen in acidic aqueous solutions and acidic polymer membranes. The wide molecular designability of PILs enabled the finding of a promising candidate, diethylmethylammonium trifluoromethanesulfonate ([dema][ TfO]), which exhibits favorable bulk properties and electrochemical activity. Solid thin films containing [dema][ TfO] were fabricated using sulfonated polyimide as a matrix polymer. By using the composite membrane, non-humidifying fuel cell operation at 120°C succeeded. The fuel cell performance can be further improved by the optimization of the catalyst layer and with further research on PILs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Scheme 2
Figure 8

Similar content being viewed by others

References

  1. K. Strasser, J. Power Sources 37, 209 (1992).

    CAS  Google Scholar 

  2. S. Alayoglu, A.U. Nilekar, M. Mavrikakis, B. Eichhorn, Nat. Mater. 7, 333 (2008).

    CAS  Google Scholar 

  3. T. Ikeda, M. Boero, S.F. Huang, K. Terakura, M. Oshima, J. Ozaki, J. Phys. Chem. C 112, 14706 (2008).

    CAS  Google Scholar 

  4. A. Ishihara, Y. Ohgi, K. Matsuzawa, S. Mitsushima, K. Ota, Electrochim. Acta 55, 8005 (2010).

    CAS  Google Scholar 

  5. Q.F. Li, R.H. He, J.O. Jensen, N.J. Bjerrum, Chem. Mater. 15, 4896 (2003).

    CAS  Google Scholar 

  6. K.A. Mauritz, R.B. Moore, Chem. Rev. 104, 4535 (2004).

    CAS  Google Scholar 

  7. R.D. Rogers, K.R. Seddon, Science 302, 792 (2003).

    Google Scholar 

  8. J.S. Wilkes, Green Chem. 4, 73 (2002).

    CAS  Google Scholar 

  9. K.R. Seddon, Nat. Mater. 2, 363 (2003).

    CAS  Google Scholar 

  10. A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 105, 4603 (2001).

    CAS  Google Scholar 

  11. H. Tokuda, S. Tsuzuki, M.A.B.H. Susan, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 110, 19593 (2006).

    CAS  Google Scholar 

  12. N. Nakata, K. Kohara, K. Matsumoto, R. Hagiwara, J. Chem. Eng. Data 56, 1840 (2011).

    CAS  Google Scholar 

  13. H. Sakaebe, H. Matsumoto, Electrochem. Commun. 5, 594 (2003).

    CAS  Google Scholar 

  14. B. Garcia, S. Lavallee, G. Perron, C. Michot, M. Armand, Electrochim. Acta 49, 4583 (2004).

    CAS  Google Scholar 

  15. B. Scrosati, J. Garche, J. Power Sources 195, 2419 (2010).

    CAS  Google Scholar 

  16. M. Grätzel, J. Photochem. Photobiol. C 4, 145 (2003).

    Google Scholar 

  17. T.L. Greaves, C.J. Drummond, Chem. Rev. 108, 206 (2008).

    CAS  Google Scholar 

  18. N. Byrne, C.A. Angell, J. Mol. Biol. 378, 707 (2008).

    CAS  Google Scholar 

  19. A. Kumar, P. Venkatesu, RSC Adv. 3, 362 (2013).

    CAS  Google Scholar 

  20. D.F. Evans, A. Yamauchi, R. Roman, E.Z. Casassa, J. Colloid Interface Sci. 88, 89 (1982).

    CAS  Google Scholar 

  21. R. Atkin, L.M. De Fina, U. Kiederling, G.G. Warr, J. Phys. Chem. B 113, 12201 (2009).

    CAS  Google Scholar 

  22. T.L. Greaves, C.J. Drummond, Chem. Soc. Rev. 37, 1709 (2008).

    CAS  Google Scholar 

  23. R. Hayes, S. Imberti, G.G. Warr, R. Atkin, Phys. Chem. Chem. Phys. 13, 3237 (2011).

    CAS  Google Scholar 

  24. C.J.D. von Grotthuss, Ann. Chim. 58, 54 (1806).

    Google Scholar 

  25. K.D. Kreuer, A. Rabenau, W. Weppner, Angew. Chem. Int. Ed. 21, 208 (1982).

    Google Scholar 

  26. K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Chem. Rev. 104, 4637 (2004).

    CAS  Google Scholar 

  27. T. Dippel, K.D. Kreuer, Solid State Ionics 46, 3 (1991).

    CAS  Google Scholar 

  28. A. Noda, M.A.B.H. Susan, K. Kudo, S. Mitsushima, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 107, 4024 (2003).

    CAS  Google Scholar 

  29. J. Zhang, Y. Mo, M.B. Vukmirovic, R. Klie, K. Sasaki, R.R. Adzic, J. Phys. Chem. B 108, 10955 (2004).

    CAS  Google Scholar 

  30. M.A.B.H. Susan, A. Noda, S. Mitsushima, M. Watanabe, Chem. Commun. 8, 938 (2003).

    Google Scholar 

  31. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B 108, 16593 (2004).

    CAS  Google Scholar 

  32. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B 109, 6103 (2005).

    CAS  Google Scholar 

  33. K. Ueno, H. Tokuda, M. Watanabe, Phys. Chem. Chem. Phys. 12, 15133 (2010).

    CAS  Google Scholar 

  34. P. Bonhôte, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram, M. Grätzel, Inorg. Chem. 35, 1168 (1996).

    Google Scholar 

  35. Q. Zhou, W.A. Henderson, G.B. Appetecchi, M. Montanino, S. Passerini, J. Phys. Chem. B 112, 13577 (2008).

    CAS  Google Scholar 

  36. D.R. MacFarlane, P. Meakin, J. Sun, N. Amini, M. Forsyth, J. Phys. Chem. B 103, 4164 (1999).

    CAS  Google Scholar 

  37. J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker, R.D. Rogers, Green Chem. 3, 156 (2001).

    CAS  Google Scholar 

  38. M. Yoshizawa, W. Xu, C.A. Angell, J. Am. Chem. Soc. 125, 15411 (2003).

    CAS  Google Scholar 

  39. H.M. Luo, G.A. Baker, J.S. Lee, R.M. Pagni, S. Dai, J. Phys. Chem. B 113, 4181 (2009).

    CAS  Google Scholar 

  40. M.S. Miran, H. Kinoshita, T. Yasuda, M.A.B.H. Susan, M. Watanabe, Phys. Chem. Chem. Phys. 14, 5178 (2012).

    CAS  Google Scholar 

  41. M.S. Miran, T. Yasuda, M.A.B.H. Susan, K. Dokko, M. Watanabe, RSC Adv. 3, 4141 (2013).

    CAS  Google Scholar 

  42. H. Nakamoto, M. Watanabe, Chem. Commun. 24, 2539 (2007).

    Google Scholar 

  43. T. Michot, A. Nishimoto, M. Watanabe, Electrochim. Acta 45, 1347 (2000).

    CAS  Google Scholar 

  44. M.A.B.H. Susan, T. Kaneko, A. Noda, M. Watanabe, J. Am. Chem. Soc. 127, 4976 (2005).

    CAS  Google Scholar 

  45. K. Ueno, K. Hata, T. Katakabe, M. Kondoh, M. Watanabe, J. Phys. Chem. B 112, 9013 (2008).

    CAS  Google Scholar 

  46. S.Y. Lee, T. Yasuda, M. Watanabe, J. Power Sources 195, 5909 (2010).

    CAS  Google Scholar 

  47. S.Y. Lee, A. Ogawa, M. Kanno, H. Nakamoto, T. Yasuda, M. Watanabe, J. Am. Chem. Soc. 132, 9764 (2010).

    CAS  Google Scholar 

  48. T. Yasuda, S. Nakamura, Y. Honda, K. Kinugawa, S.Y. Lee, M. Watanabe, ACS Appl. Mater. Interfaces 4, 1783 (2012).

    CAS  Google Scholar 

  49. Y.L. Loo, R.A. Register, Macromolecules 35, 2365 (2002).

    CAS  Google Scholar 

  50. L. Sun, L. Zhu, Q. Ge, R.P. Quirk, C. Xue, S.Z.D. Cheng, B.S. Hsiao, C.A. Aviala-Orta, I. Sics, M.E. Cantino, Polymer 45, 2931 (2004).

    CAS  Google Scholar 

  51. L. Johnson, A. Ejigu, P. Licence, D.A. Walsh, J. Phys. Chem. C 116, 18048 (2012).

    CAS  Google Scholar 

  52. T. Yasuda, A. Ogawa, M. Kanno, K. Mori, K. Sakakibara, M. Watanabe, Chem. Lett. 38, 692 (2009).

    CAS  Google Scholar 

  53. T. Yasuda, S. Nakamura, S.Y. Lee, M. Watanabe, Chem. Lett. 39, 678 (2010).

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by a Grant-in-Aid for Scientific Research in the Priority Area “Science of Ionic Liquids” from MEXT of Japan and by the Technology Research Grant Program from NEDO of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Yasuda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasuda, T., Watanabe, M. Protic ionic liquids: Fuel cell applications. MRS Bulletin 38, 560–566 (2013). https://doi.org/10.1557/mrs.2013.153

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2013.153

Navigation