Skip to main content
Log in

Organic resistive nonvolatile memory materials

  • Resistive switching phenomena in thin films: Materials, devices, and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Resistive memory devices based on organic materials that can be configured to two or more stable resistance states have been extensively explored as information storage media due to their advantages, which include simple device structures, low fabrication costs, and flexibility. Various organic-based materials such as small molecules, polymers, and composite materials have been observed to show bistability. This review provides a general summary about the materials, structures, characteristics, and mechanisms of organic resistive memory devices. Several critical strategies for device fabrication, performance enhancement, and integrated circuit architectures are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Y. Yang, J. Ouyang, L. Ma, R.J.H. Tseng, C.W. Chu, Adv. Funct. Mat. 16, 1001 (2006).

    Article  CAS  Google Scholar 

  2. J.C. Scott, L.D. Bozano, Adv. Mater. 19, 1452 (2007).

  3. Q.-D. Ling, D.-J. Liaw, C. Zhu, D. S.-H. Chan, E.-T. Kang, K.-G. Neoh, Prog. Polym. Sci. 33, 917 (2008).

  4. J. Ouyang, C.-W. Chu, C.R. Szmanda, L. Ma, Y. Yang, Nat. Mater. 3, 918 (2004).

  5. B. Mukherjee, A.J. Pal, Org. Electron. 7, 249 (2006).

  6. J. Lin, D. Ma, Org. Electron. 10, 275 (2009).

  7. C.W. Chu, J. Ouyang, J.H. Tseng, Y. Yang, Adv. Mater. 17, 1440 (2005).

  8. P.Y. Lai, J.S. Chen, Appl. Phys. Lett. 93, 153305 (2008).

  9. B.-O. Cho, T. Yasue, H. Yoon, M.-S. Lee, I.-S. Yeo, U.I. Chung, J.-T. Moon, B.-I. Ryu, IEEE Int. Electron Devices Meeting (2006); doi:10.1109/IEDM.2006.346729.

  10. G. Liu, Q.-D. Ling, E.-T. Kang, K.-G. Neoh, D.-J. Liaw, F.-C. Chang, C.-X. Zhu, D.S.-H. Chan, J. Appl. Phys. 102, 024502 (2007).

  11. G. Liu, Q.-D. Ling, E.Y.H. Teo, C.-X. Zhu, D.S.-H. Chan, K.-G. Neoh, E.-T. Kang, ACS Nano 3, 1929 (2009).

  12. L.D. Bozano, B.W. Kean, M. Beinhoff, K.R. Carter, P.M. Rice, J.C. Scott, Adv. Funct. Mat. 15, 1933 (2005).

  13. T.-W. Kim, S.-H. Oh, H. Choi, G. Wang, H. Hwang, D.-Y. Kim, T. Lee, Appl. Phys. Lett. 92, 253308 (2008).

  14. H.-T. Lin, Z. Pei, Y.-J. Chan, IEEE Electron Device Lett. 28, 569 (2007).

  15. J.-R. Chen, H.-T. Lin, G.-W. Hwang, Y.-J. Chan, P.-W. Li, Nanotechnology 20, 255706 (2009).

  16. K. Asadi, D.M. de Leeuw, B. de Boer, P.W.M. Blom, Nat. Mater. 7, 547 (2008).

  17. Z.J. Donhauser, B.A. Mantooth, K.F. Kelly, L.A. Bumm, J.D. Monnell, J.J. Stapleton, D.W. Price, A.M. Rawlett, D.L. Allara, J.M. Tour, P.S. Weiss, Science 292, 2303 (2001).

  18. G. Peng, D. Yuan-Wei, J. Xin, L. Yin-Xiang, X. Wei, IEEE Electron Device Lett. 28, 572 (2007).

  19. C.N. Lau, D.R. Stewart, R.S. Williams, M. Bockrath, Nano Lett. 4, 569 (2004).

  20. B.C. Das, A.J. Pal, Org. Electron. 9, 39 (2008).

  21. H. Carchano, R. Lacoste, Y. Segui, Appl. Phys. Lett. 19, 414 (1971).

  22. H.K. Henisch, W.R. Smith, Appl. Phys. Lett. 24, 589 (1974).

  23. S.L. Lim, Q. Ling, E.Y.H. Teo, C.X. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Chem. Mater. 19, 5148 (2007).

  24. T.-W. Kim, S.-H. Oh, H. Choi, G. Wang, H. Hwang, D.-Y. Kim, T. Lee, IEEE Electron Device Lett. 29, 852 (2008).

  25. H.S. Majumdar, A. Bandyopadhyay, A. Bolognesi, A.J. Pal, J. Appl. Phys. 91, 2433 (2002).

  26. Y. Sadaoka, Y. Sakai, J. Chem. Soc., Faraday Trans. 2 72, 1911 (1976).

  27. S.H. Kim, K.S. Yook, J. Jang, J.Y. Lee, Synth. Met. 158, 861 (2008).

  28. A. Laiho, H.S. Majumdar, J.K. Baral, F. Jansson, R. Osterbacka, O. Ikkala, Appl. Phys. Lett. 93, 203309 (2008).

  29. F. Li, T.W. Kim, W. Dong, Y.-H. Kim, Appl. Phys. Lett. 92, 011906 (2008).

  30. F. Li, D.-I. Son, S.-M. Seo, H.-M. Cha, H.-J. Kim, B.-J. Kim, J.H. Jung, T.W. Kim, Appl. Phys. Lett. 91, 122111 (2007).

  31. D.T. Simon, M.S. Griffo, R.A. DiPietro, S.A. Swanson, S.A. Carter, Appl. Phys. Lett. 89, 133510 (2006).

  32. F. Verbakel, S.C.J. Meskers, R.A.J. Janssen, Chem. Mater. 18, 2707 (2006).

  33. Y. Song, Q.D. Ling, S.L. Lim, E.Y.H. Teo, Y.P. Tan, L. Li, E.T. Kang, D.S.H. Chan, C. Zhu, IEEE Electron Device Lett. 28, 107 (2007).

  34. S. Paul, A. Kanwal, M. Chhowalla, Nanotechnology 17, 145 (2006).

  35. D.-I. Son, J.-H. Kim, D.-H. Park, W.K. Choi, F. Li, J.H. Ham, T.W. Kim, Nanotechnology 19, 055204 (2008).

  36. A. Bandyopadhyay, A.J. Pal, Appl. Phys. Lett. 84, 999 (2004).

  37. B. Cho, T.-W. Kim, M. Choe, G. Wang, S. Song, T. Lee, Org. Electron. 10, 473 (2009).

  38. B. Cho, T.-W. Kim, S. Song, Y. Ji, M. Jo, H. Hwang, G.-Y. Jung, T. Lee, Adv. Mater. 22, 1228 (2010).

  39. M.J. Lee, Y. Park, D.S. Suh, E.H. Lee, S. Seo, D.C. Kim, R. Jung, B.S. Kang, S.E. Ahn, C.B. Lee, D.H. Seo, Y.K. Cha, I.K. Yoo, J.S. Kim, B.H. Park, Adv. Mater. 19, 3919 (2007).

  40. H.-T. Lin, Z. Pei, J.-R. Chen, Y.-J. Chan, IEEE Electron Device Lett. 30, 18 (2009).

  41. I.G. Baek, D.C. Kim, M.J. Lee, H.J. Kim, E.K. Yim, M.S. Lee, J.E. Lee, S.E. Ahn, S. Seo, J.H. Lee, J.C. Park, Y.K. Cha, S.O. Park, H.S. Kim, I.K. Yoo, U.I. Chung, J.T. Moon, B.I. Ryu, IEEE Int. Electron Devices Meeting (2005), doi:10.1109/ IEDM.2005.1609462.

  42. H.S. Nalwa, Ferroelectric Polymers: Chemistry, Physics, and Applications (Marcel Dekker, New York, 1995).

  43. G. Dearnaley, D.V. Morgan, A.M. Stoneham, J. Non-Cryst. Solids 4, 593 (1970).

  44. G. Dearnaley, A.M. Stoneham, D.V. Morgan, Rep. Prog. Phys. 33, 1129 (1970).

  45. L.F. Pender, R.J. Fleming, J. Appl. Phys. 46, 3426 (1975).

  46. Y. Segui, B. Ai, H. Carchano, J. Appl. Phys. 47, 140 (1976).

  47. W. Hwang, K.C. Kao, J. Chem. Phys. 60, 3845 (1974).

  48. W.-J. Joo, T.-L. Choi, K.-H. Lee, Y. Chung, J. Phys. Chem. B 111, 7756 (2007).

  49. S. Sivaramakrishnan, P.-J. Chia, Y.-C. Yeo, L.-L. Chua, P.K.H. Ho, Nat. Mater. 6, 149 (2007).

  50. A. Carbone, B.K. Kotowska, D. Kotowski, Phys. Rev. Lett. 95, 236601 (2005).

  51. P. Mark, W. Helfrich, J. Appl. Phys. 33, 205 (1962).

  52. S. Das, A.J. Pal, Appl. Phys. Lett. 76, 1770 (2000).

  53. J.G. Simmons, R.R. Verderber, Proc. R. Soc. London, Ser. A 301, 77 (1967).

  54. V.S. Reddy, S. Karak, A. Dhar, Appl. Phys. Lett. 94, 173304 (2009).

  55. J.-G. Park, W.-S. Nam, S.-H. Seo, Y.-G. Kim, Y.-H. Oh, G.-S. Lee, U.-G. Paik, Nano Lett. 9, 1713 (2009).

  56. R.S. Potember, T.O. Poehler, D.O. Cowan, Appl. Phys. Lett. 34, 405 (1979).

  57. E.I. Kamitsos, C.H. Tzinis, W.M. Risen, Solid State Commun. 42, 561 (1982).

  58. A.J. Kronemeijer, H.B. Akkerman, T. Kudernac, B.J.V. Wees, B.L. Feringa, P.W.M. Blom, B.D. Boer, Adv. Mater. 20, 1467 (2008).

  59. E.Y.H. Teo, Q.D. Ling, Y. Song, Y.P. Tan, W. Wang, E.T. Kang, D.S.H. Chan, C. Zhu, Org. Electron. 7, 173 (2006).

  60. J.H.A. Smits, S.C.J. Meskers, R.A.J. Janssen, A.W. Marsman, D.M. de Leeuw, Adv. Mater. 17, 1169 (2005).

  61. T.-W. Kim, K. Lee, S.-H. Oh, G. Wang, D.-Y. Kim, G.-Y. Jung, T. Lee, Nanotechnology 19, 405201 (2008).

  62. T.-W. Kim, H. Choi, S.-H. Oh, M. Jo, G. Wang, B. Cho, D.-Y. Kim, H. Hwang, T. Lee, Nanotechnology 20, 025201 (2009).

  63. T.-W. Kim, H. Choi, S.-H. Oh, G. Wang, D.-Y. Kim, H. Hwang, T. Lee, Adv. Mater. 21, 2497 (2009).

  64. K. Kinoshita, K. Tsunoda, Y. Sato, H. Noshiro, S. Yagaki, M. Aoki, Y. Sugiyama, Appl. Phys. Lett. 93, 033506 (2008).

  65. J.C. Scott, Science 304, 62 (2004).

  66. International Technology Roadmap For Semiconductors (2007). Emerging research devices. (Semiconductor Industry Association, International Sematech, Austin, TX 2007).

  67. S. Möller, C. Perlov, W. Jackson, C. Taussig, S.R. Forrest, Nature 426, 166 (2003).

  68. E.Y.H. Teo, C. Zhang, S.L. Lim, E.-T. Kang, D.S.H. Chan, C. Zhu, IEEE Electron Device Lett. 30, 487 (2009).

  69. S.-E. Ahn, B.S. Kang, K.H. Kim, M.-J. Lee, C.B. Lee, S.G., C.J. Kim, Y. Park, IEEE Electron Device Lett. 30, 550 (2009).

  70. M.-J. Lee, S.I. Kim, C.B. Lee, H. Yin, S.-E. Ahn, B.S. Kang, K.H. Kim, J.C. Park, C.J. Kim, I. Song, S.W. Kim, G. Stefanovich, J.H. Lee, S.J. Chung, Y.H. Kim, Y. Park, Adv. Funct. Mater. 19, 1587 (2009).

  71. K. Asadi, M. Li, N. Stingelin, P.W.M. Blom, D.M. de Leeuw, Appl. Phys. Lett. 97, 193308 (2010).

  72. H.Y. Jeong, Y.I. Kim, J.Y. Lee, S.-Y. Choi, Nanotechnology 21, 115203 (2010).

  73. S. Song, B. Cho, T.-W. Kim, Y. Ji, M. Jo, G. Wang, M. Choe, Y.H. Kahng, H. Hwang, T. Lee, Adv. Mater. 22, 5048 (2010).

  74. W.L. Kwan, R.J. Tseng, W. Wu, Q. Pei, Y. Yang, IEEE Int. Electron Devices Meeting (2007); doi:10.1109/IEDM.2007.4418911.

  75. W.L. Kwan, R.J. Tseng, Y. Yang, Philos. Trans. R. Soc., A 367, 4159 (2009).

  76. C. Kügeler, M. Meier, R. Rosezin, S. Gilles, R. Waser, Solid-State Electron. 53, 1287 (2009).

  77. J.J. Kim, B. Cho, K.S. Kim, T. Lee, G.Y. Jung, Adv. Mater. 23, 2104 (2011).

  78. L. Li, Q.-D. Ling, S.-L. Lim, Y.-P. Tan, C. Zhu, D.S.H. Chan, E.-T. Kang, K.-G. Neoh, Org. Electron. 8, 401 (2007).

  79. S. Kim, Y.-K. Choi, Appl. Phys. Lett. 92, 223508 (2008).

  80. S. Lee, H. Kim, D.-J. Yun, S.-W. Rhee, K. Yong, Appl. Phys. Lett. 95, 262113 (2009).

  81. H.Y. Jeong, J.Y. Kim, J.W. Kim, J.O. Hwang, J.-E. Kim, J.Y. Lee, T.H. Yoon, B.J. Cho, S.O. Kim, R.S. Ruoff, S.-Y. Choi, Nano Lett. 10, 4381 (2010).

  82. Y. Ji, B. Cho, S. Song, T.-W. Kim, M. Choe, Y.H. Kahng, T. Lee, Adv. Mater. 22, 3071 (2010).

  83. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, T. Someya, Science 326, 1516 (2009).

  84. Y. Ji, S. Lee, B. Cho, S. Song, T. Lee, ACS Nano 5, 5995 (2011).

  85. K. Lian, R. Li, H. Wang, J. Zhang, D. Gamota, Mater. Sci. Eng., B 167, 12 (2010).

  86. A.J. Heeger, Angew. Chem. Int. Ed. 40, 2591 (2001).

  87. A.G. MacDiarmid, Angew. Chem. Int. Ed. 40, 2581 (2001).

  88. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007).

  89. Q.D. Ling, S.L. Lim, Y. Song, C.X. Zhu, D.S.H. Chan, E.T. Kang, K.G. Neoh, Langmuir 23, 312 (2007).

  90. L.-H. Xie, Q.-D. Ling, X.-Y. Hou, W. Huang, J. Am. Chem. Soc. 130, 2120 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank T.L.’s group members, including Byungjin Cho, Sunghoon Song, and Yongsung Ji, who are working on this topic. T.L. also acknowledges partial support from the Korean National Research Laboratory program and National Core Research Center grant from the Korean Ministry of Education, Science, and Technology. Y.C. acknowledges the support of the Defense Advanced Research Projects Agency (DARPA) under the program “Physical Intelligence,” and by the Air Force Office of Scientific Research (AFOSR) under the program “Bio-inspired intelligent sensing materials for Fly-by-Feel autonomous vehicle.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takhee Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, T., Chen, Y. Organic resistive nonvolatile memory materials. MRS Bulletin 37, 144–149 (2012). https://doi.org/10.1557/mrs.2012.4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.4

Navigation