Skip to main content
Log in

Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective

  • Organic single crystals
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The aim of this article is to briefly review the progress made over the past few years in the theoretical description of the intrinsic charge-transport properties of organic molecular crystals. We first discuss the state-of-the-art methodologies used in the derivation of the electronic coupling and electron-phonon coupling constants. We illustrate the application of these techniques to two classes of semiconductors of interest for crystal-based organic electronics: crystals consisting of a single molecular building block, such as oligoacenes and their derivatives, and bimolecular crystals consisting of donor and acceptor compounds. After a brief overview of recent developments in the polaron modeling of the electronic and electrical properties of these systems, we examine the impact that the interplay between electronic interactions and various electron-phonon mechanisms has on the temperature dependence of the charge-carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, J.L. Brédas, Chem. Rev. 107, 926 (2007).

    Article  CAS  Google Scholar 

  2. H. Bässler, A. Köhler, Top. Curr. Chem. 312, 1 (2012).

    Google Scholar 

  3. F.C. Grozema, L.D.A. Siebbeles, Int. Rev. Phys. Chem. 27, 87 (2008).

    Article  CAS  Google Scholar 

  4. Z.G. Shuai, L.J. Wang, Q.K. Li, Adv. Mater. 23, 1145 (2011).

    Article  CAS  Google Scholar 

  5. A. Troisi, Adv. Polym. Sci. 223, 259 (2010).

    CAS  Google Scholar 

  6. J.E. Anthony, Angew. Chem. Int. Ed. 47, 452 (2008).

    Article  CAS  Google Scholar 

  7. V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J.A. Rogers, M.E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  8. V.C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R.L. Willett, T. Someya, M.E. Gershenson, J.A. Rogers, Science 303, 1644 (2004).

    Article  CAS  Google Scholar 

  9. J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).

    Article  Google Scholar 

  10. O.D. Jurchescu, J. Baas, T.T.M. Palstra, Appl. Phys. Lett. 84, 3061 (2004).

    Article  CAS  Google Scholar 

  11. S. Horiuchi, T. Hasegawa, Y. Tokura, J. Phys. Soc. Jpn. 75, 051016 (2006).

    Article  Google Scholar 

  12. T. Hasegawa, J. Takeya, Sci. Technol. Adv. Mater. 10, 024314 (2009).

    Article  Google Scholar 

  13. L.Y. Zhu, Y.P. Yi, Y. Li, E.G. Kim, V. Coropceanu, J.L. Brédas, J. Am. Chem. Soc. 134, 2340 (2012).

    Article  CAS  Google Scholar 

  14. J. Zhang, H. Geng, T.S. Virk, Y. Zhao, J. Tan, C.-A. Di, W. Xu, K. Singh, W. Hu, Z. Shuai, Y. Liu, D. Zhu, Adv. Mater. 24, 2603 (2012).

    Article  CAS  Google Scholar 

  15. T. Hasegawa, K. Mattenberger, J. Takeya, B. Batlogg, Phys. Rev. B 69, 245115 (2004).

    Article  Google Scholar 

  16. E.F. Valeev, V. Coropceanu, D.A. da Silva Filho, S. Salman, J.L. Brédas, J. Am. Chem. Soc. 128, 9882 (2006).

    Article  CAS  Google Scholar 

  17. V. Coropceanu, R.S. Sánchez-Carrera, P. Paramonov, G.M. Day, J.L. Brédas, J. Phys. Chem. C 113, 4679 (2009).

    Article  CAS  Google Scholar 

  18. A. Girlando, L. Grisanti, M. Masino, I. Bilotti, A. Brillante, R.G. Della Valle, E. Venuti, Phys. Rev. B 82, 035208 (2010).

    Article  Google Scholar 

  19. N.G. Martinelli, J. Idé, R.S. Sánchez-Carrera, V. Coropceanu, J.L. Brédas, L. Ducasse, F. Castet, J. Cornil, D. Beljonne, J. Phys. Chem. C 113, 20678 (2010).

    Article  Google Scholar 

  20. R.S. Sánchez-Carrera, P. Paramonov, G.M. Day, V. Coropceanu, J.L. Brédas, J. Am. Chem. Soc. 132, 14437 (2010).

    Article  Google Scholar 

  21. Y. Li, Y.P. Yi, V. Coropceanu, J.L. Brédas, Phys. Rev. B 85, 245201 (2012).

    Article  Google Scholar 

  22. S. Ciuchi, S. Fratini, Phys. Rev. Lett. 106, 166403 (2011).

    Article  CAS  Google Scholar 

  23. C.A. Perroni, V. Marigliano Ramaglia, V. Cataudella, Phys. Rev. B 84, 014303 (2011).

    Article  Google Scholar 

  24. V. Cataudella, G. De Filippis, C.A. Perroni, Phys. Rev. B 83, 165203 (2011).

  25. S. Fratini, S. Ciuchi, Phys. Rev. Lett. 103, 266601 (2009).

    Article  CAS  Google Scholar 

  26. A. Troisi, G. Orlandi, Phys. Rev. Lett. 96, 086601 (2006).

    Article  Google Scholar 

  27. M. Pope, C.E. Swenberg, Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, New York, 1999).

    Google Scholar 

  28. E. Silinsh, V. Cápek, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (American Institute of Physics, New York, 1994).

    Google Scholar 

  29. J.E. Norton, J.L. Brédas, J. Am. Chem. Soc. 130, 12377 (2008).

    Article  CAS  Google Scholar 

  30. T. Holstein, Ann. Phys. (N.Y.) 8, 325 (1959).

    Article  CAS  Google Scholar 

  31. T. Holstein, Ann. Phys. (N.Y.) 8, 343 (1959).

    Article  CAS  Google Scholar 

  32. R.E. Peierls, Quantum Theory of Solids (Clarendon Press, Oxford, 1955).

    Google Scholar 

  33. Y.A. Berlin, F.C. Grozema, L.D.A. Siebbeles, M.A. Ratner, J. Phys. Chem. C 112, 10988 (2008).

    Article  CAS  Google Scholar 

  34. I.A. Balabin, J.N. Onuchic, Science 290, 114 (2000).

    Article  CAS  Google Scholar 

  35. V. May, O. Kühn, Charge and Energy Transfer Dynamics in Molecular Systems, 3rd rev. (Wiley-VCH, Weinheim, 2011).

    Book  Google Scholar 

  36. M.D. Newton, Chem. Rev. 91, 767 (1991).

    Article  CAS  Google Scholar 

  37. J. Jortner, M. Bixon, Eds., Electron Transfer ─_From Isolated Molecules to Biomolecules (Wiley, New York, 1999).

  38. C.P. Hsu, Acc. Chem. Res. 42, 509 (2009).

    Article  CAS  Google Scholar 

  39. B. Kaduk, T. Kowalczyk, T. Van Voorhis, Chem. Rev. 112, 321 (2012).

    Article  CAS  Google Scholar 

  40. T. Koopmans, Physica 1, 104 (1934).

    Article  Google Scholar 

  41. K. Senthilkumar, F.C. Grozema, F.M. Bickelhaupt, L.D.A. Siebbeles, J. Chem. Phys. 119, 9809 (2003).

    Article  CAS  Google Scholar 

  42. Y. Li, V. Coropceanu, J.L. Brédas, J. Phys. Chem. Lett. 3, 3325 (2012).

    Article  CAS  Google Scholar 

  43. H. Kakuta, T. Hirahara, I. Matsuda, T. Nagao, S. Hasegawa, N. Ueno, K. Sakamoto, Phys. Rev. Lett. 98, 247601 (2007).

    Article  Google Scholar 

  44. R.A. Marcus, Rev. Mod. Phys. 65, 599 (1993).

    Article  CAS  Google Scholar 

  45. P.F. Barbara, T.J. Meyer, M.A. Ratner, J. Phys. Chem. 100, 13148 (1996).

    Article  CAS  Google Scholar 

  46. V. Coropceanu, M. Malagoli, D.A. da Silva Filho, N.E. Gruhn, T.G. Bill, J.L. Brédas, Phys. Rev. Lett. 89, 275503 (2002).

    Article  CAS  Google Scholar 

  47. I.V. Brovchenko, Chem. Phys. Lett. 278, 355 (1997).

    Article  CAS  Google Scholar 

  48. D.P. McMahon, A. Troisi, J. Phys. Chem. Lett. 1, 941 (2010).

    Article  CAS  Google Scholar 

  49. W.P. Su, J.R. Schrieffer, A.J. Heeger, Phys. Rev. Lett. 42, 1698 (1979).

    Article  CAS  Google Scholar 

  50. K. Hannewald, V.M. Stojanovi ć, J.M.T. Schellekens, P.A. Bobbert, G. Kresse, J. Hafner, Phys. Rev. B 69, 075211 (2004).

    Article  Google Scholar 

  51. L.J. Wang, Q. Peng, Q.K. Li, Z. Shuai, J. Chem. Phys. 127, 044506 (2007).

    Article  CAS  Google Scholar 

  52. A. Girlando, M. Masino, I. Bilotti, A. Brillante, R.G. Della Valle, E. Venuti, Phys. Chem. Chem. Phys. 14, 1694 (2012).

    Article  CAS  Google Scholar 

  53. Y. Yi, V. Coropceanu, J.L. Brédas, J. Chem. Phys. 137, 164303 (2012).

    Article  Google Scholar 

  54. A. Troisi, G. Orlandi, J. Phys. Chem. A 110, 4065 (2006).

    Article  CAS  Google Scholar 

  55. R.W. Munn, R. Silbey, J. Chem. Phys. 83, 1843 (1985).

    Article  CAS  Google Scholar 

  56. R.W. Munn, R. Silbey, J. Chem. Phys. 83, 1854 (1985).

    Article  CAS  Google Scholar 

  57. F. Ortmann, F. Bechstedt, K. Hannewald, Phys. Rev. B 79, 235206 (2009).

    Article  Google Scholar 

  58. D.M. Chen, J. Ye, H.J. Zhang, Y. Zhao, J. Phys. Chem. B 115, 5312 (2011).

    Article  CAS  Google Scholar 

  59. G.D. Mahan, Many-Particle Physics, 2 nd ed. (Plenum, New York, 1990).

    Book  Google Scholar 

  60. D. Wang, L.P. Chen, R.H. Zheng, L.J. Wang, Q. Shi, J. Chem. Phys. 132, 081101 (2010).

    Article  Google Scholar 

  61. J. Bohlin, M. Linares, S. Stafstrom, Phys. Rev. B 83, 085209 (2011).

    Article  Google Scholar 

  62. X.X. Zhong, Y. Zhao, J. Chem. Phys. 135, 134110 (2011).

    Article  Google Scholar 

  63. Y. Zhao, D.W. Brown, K. Lindenberg, J. Chem. Phys. 100, 2335 (1994).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been funded in part by Solvay and by the National Science Foundation under Award No. DMR-0819885 of the MRSEC Program (JLB) and Award No. DMR-1105147 (VC). The computational resources have been made available in part by the National Science Foundation under Award No. CHE-0946869 of the CRIF Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veaceslav Coropceanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coropceanu, V., Li, Y., Yi, Y. et al. Intrinsic charge transport in single crystals of organic molecular semiconductors: A theoretical perspective. MRS Bulletin 38, 57–64 (2013). https://doi.org/10.1557/mrs.2012.313

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.313

Navigation