Skip to main content
Log in

Thermal properties of graphene: Fundamentals and applications

  • Functionalities
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Graphene is a two-dimensional (2D) material with over 100-fold anisotropy of heat flow between the in-plane and out-of-plane directions. High in-plane thermal conductivity is due to covalent sp2 bonding between carbon atoms, whereas out-of-plane heat flow is limited by weak van der Waals coupling. Herein, we review the thermal properties of graphene, including its specific heat and thermal conductivity (from diffusive to ballistic limits) and the influence of substrates, defects, and other atomic modifications. We also highlight practical applications in which the thermal properties of graphene play a role. For instance, graphene transistors and interconnects benefit from the high in-plane thermal conductivity, up to a certain channel length. However, weak thermal coupling with substrates implies that interfaces and contacts remain significant dissipation bottlenecks. Heat flow in graphene or graphene composites could also be tunable through a variety of means, including phonon scattering by substrates, edges, or interfaces. Ultimately, the unusual thermal properties of graphene stem from its 2D nature, forming a rich playground for new discoveries of heat-flow physics and potentially leading to novel thermal management applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. H.O. Pierson, Handbook of Carbon, Graphite, Diamond and Fullerenes: Properties, Processing and Applications (Noyes Publications, Park Ridge, NJ, 1993).

    Google Scholar 

  2. M.C. Schabel, J.L. Martins, Phys. Rev. B 46, 7185 (1992).

  3. D.W. Bullett, J. Phys. C: Solid State Phys. 8, 2707 (1975).

  4. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (World Scientific, Singapore, 1998).

  5. M. Mohr, J. Maultzsch, E. Dobardži ć, S. Reich, I. Miloševi ć, M. Damnjanovi ć, A. Bosak, M. Krisch, C. Thomsen, Phys. Rev. B 76, 035439 (2007).

  6. C. Oshima, T. Aizawa, R. Souda, Y. Ishizawa, Y. Sumiyoshi, Solid State Commun. 65, 1601 (1988).

  7. L. Wirtz, A. Rubio, Solid State Commun. 131, 141 (2004).

  8. N. Mingo, D.A. Broido, Phys. Rev. Lett. 95, 096105 (2005).

  9. D.L. Nika, E.P. Pokatilov, A.S. Askerov, A.A. Balandin, Phys. Rev. B 79, 155413 (2009).

  10. V.N. Popov, Phys. Rev. B 66, 153408 (2002).

  11. E. Muñoz, J. Lu, B.I. Yakobson, Nano Lett. 10, 1652 (2010).

  12. E. Pop, Nano Res. 3, 147 (2010).

  13. Z.-Y. Ong, E. Pop, J. Appl. Phys. 108, 103502 (2010).

  14. Z.-Y. Ong, E. Pop, J. Shiomi, Phys. Rev. B 84, 165418 (2011).

  15. K. Kang, D. Abdula, D.G. Cahill, M. Shim, Phys. Rev. B 81, 165405 (2010).

  16. B. Qiu, X. Ruan, Appl. Phys. Lett. 100, 193101 (2012).

  17. T. Tohei, A. Kuwabara, F. Oba, I. Tanaka, Phys. Rev. B 73, 064304 (2006).

  18. R. Nicklow, N. Wakabayashi, H.G. Smith, Phys. Rev. B 5, 4951 (1972).

  19. T. Nihira, T. Iwata, Phys. Rev. B 68, 134305 (2003).

  20. L.X. Benedict, S.G. Louie, M.L. Cohen, Solid State Commun. 100, 177 (1996).

  21. J. Hone, Top. Appl. Phys. 80, 273 (2001).

  22. L.E. Fried, W.M. Howard, Phys. Rev. B 61, 8734 (2000).

  23. R. Reeber, K. Wang, J. Electron. Mater. 25, 63 (1996).

  24. V.K. Tewary, B. Yang, Phys. Rev. B 79, 125416 (2009).

  25. T. Aizawa, R. Souda, Y. Ishizawa, H. Hirano, T. Yamada, K.-i. Tanaka, C. Oshima, Surf. Sci. 237, 194 (1990).

  26. A.M. Shikin, D. Farías, K.H. Rieder, Europhys. Lett. 44, 44 (1998).

  27. Z.Y. Ong, E. Pop, Phys. Rev. B 84, 075471 (2011).

  28. K.C. Fong, K.C. Schwab, Phys. Rev. X 2, 031006 (2012).

  29. C. Jeong, S. Datta, M. Lundstrom, J. Appl. Phys. 109, 073718 (2011).

  30. S. Chen, A.L. Moore, W. Cai, J.W. Suk, J. An, C. Mishra, C. Amos, C.W. Magnuson, J. Kang, L. Shi, R.S. Ruoff, ACS Nano 5, 321 (2010).

  31. A.A. Balandin, Nat. Mater. 10, 569 (2011).

  32. S. Chen, Q. Wu, C. Mishra, J. Kang, H. Zhang, K. Cho, W. Cai, A.A. Balandin, R.S. Ruoff, Nat. Mater. 11, 203 (2012).

  33. J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X.S. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Science 328, 213 (2010).

  34. A.D. Liao, J.Z. Wu, X.R. Wang, K. Tahy, D. Jena, H.J. Dai, E. Pop, Phys. Rev. Lett. 106, 256801 (2011).

  35. E. Pop, D. Mann, Q. Wang, K.E. Goodson, H.J. Dai, Nano Lett. 6, 96 (2006).

  36. P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Phys. Rev. Lett. 87, 215502 (2001).

  37. C.Y. Ho, R.W. Powell, P.E. Liley, J. Phys. Chem. Ref. Data, 1, 279 (1972).

  38. M.M. Sadeghi, M.T. Petters, L. Shi, Solid State Commun. 152, 1321 (2012).

  39. T.R. Anthony, W.F. Banholzer, J.F. Fleischer, L.H. Wei, P.K. Kuo, R.L. Thomas, R.W. Pryor, Phys. Rev. B 42, 1104 (1990).

  40. W. Jang, Z. Chen, W. Bao, C.N. Lau, C. Dames, Nano Lett. 10, 3909 (2010).

  41. K. Saito, J. Nakamura, A. Natori, Phys. Rev. B 76, 115409 (2007).

  42. M.T. Pettes, I. Jo, Z. Yao, L. Shi, Nano Lett. 11, 1195 (2011).

  43. R. Berman, Phys. Rev. B 45, 5726 (1992).

  44. Z. Chen, W. Jang, W. Bao, C.N. Lau, C. Dames, Appl. Phys. Lett. 95, 161910 (2009).

  45. Y.K. Koh, M.-H. Bae, D.G. Cahill, E. Pop, Nano Lett. 10, 4363 (2010).

  46. K.F. Mak, C.H. Lui, T.F. Heinz, Appl. Phys. Lett. 97, 221904 (2010).

  47. L. Lindsay, D.A. Broido, N. Mingo, Phys. Rev. B 82, 115427 (2010).

  48. J. Haskins, A. Kınacı, C. Sevik, H.l. Sevinçli, G. Cuniberti, T. Ça g˘ ın, ACS Nano 5, 3779 (2011).

  49. Z. Aksamija, I. Knezevic, Appl. Phys. Lett. 98, 141919 (2011).

  50. W. Liu, M. Asheghi, J. Appl. Phys. 98, 123523 (2005).

  51. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008).

  52. W. Steinhögl, G. Schindler, G. Steinlesberger, M. Traving, M. Engelhardt, J. Appl. Phys. 97, 023706 (2005).

  53. P.G. Klemens, D.F. Pedraza, Carbon 32, 735 (1994).

  54. J.N. Hu, X.L. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009).

  55. W.J. Evans, L. Hu, P. Keblinski, Appl. Phys. Lett. 96, 203112 (2010).

  56. H.J. Zhang, G. Lee, A.F. Fonseca, T.L. Borders, K. Cho, J. Nanomater. 2010, 537657 (2010).

  57. J.N. Hu, S. Schiffli, A. Vallabhaneni, X.L. Ruan, Y.P. Chen, Appl. Phys. Lett. 97, 133107 (2010).

  58. B. Mortazavi, A. Rajabpour, S. Ahzi, Y. Remond, S.M.V. Allaei, Solid State Commun. 152, 261 (2012).

  59. H.J. Zhang, G. Lee, K. Cho, Phys. Rev. B 84, 115460 (2011).

  60. W.-R. Zhong, W.-H. Huang, X.-R. Deng, B.-Q. Ai, Appl. Phys. Lett. 99, 193104 (2011).

  61. Y. Xu, X.B. Chen, J.S. Wang, B.L. Gu, W.H. Duan, Phys. Rev. B 81, 195425 (2010).

  62. Z. Huang, T.S. Fisher, J.Y. Murthy, J. Appl. Phys. 108, 094319 (2010).

  63. J.W. Jiang, B.S. Wang, J.S. Wang, Appl. Phys. Lett. 98, 113114 (2011).

  64. N. Yang, X. Ni, J.-W. Jiang, B. Li, Appl. Phys. Lett. 100, 093107 (2012).

  65. D. Frenkel, B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic Press, New York, ed. 2, 2002).

  66. F. Hao, D.N. Fang, Z.P. Xu, Appl. Phys. Lett. 99, 041901 (2011).

  67. A. Bagri, S.P. Kim, R.S. Ruoff, V.B. Shenoy, Nano Lett. 11, 3917 (2011).

  68. A. Cao, J. Qu, J. Appl. Phys. 111, 053529 (2012).

  69. X. Li, K. Maute, M.L. Dunn, R. Yang, Phys. Rev. B 81, 245318 (2010).

  70. N. Wei, L. Xu, H.-Q. Wang, J.-C. Zheng, Nanotechnology 22, 105705 (2011).

  71. S.-K. Chien, Y.-T. Yang, C.O.-K. Chen, Carbon 50, 421 (2012).

  72. H. Sevinçli, G. Cuniberti, Phys. Rev. B 81, 113401 (2010).

  73. N. Yang, G. Zhang, B.W. Li, Appl. Phys. Lett. 95, 033107 (2009).

  74. G. Zhang, H.S. Zhang, Nanoscale 3, 4604 (2011).

  75. Q.-X. Pei, Y.-W. Zhang, Z.-D. Sha, V.B. Shenoy, Appl. Phys. Lett. 100, 101901 (2012).

  76. J. Lee, V. Varshney, A.K. Roy, J.B. Ferguson, B.L. Farmer, Nano Lett. 12, 3491 (2012).

  77. L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010).

  78. A. Javey, J. Guo, M. Paulsson, Q. Wang, D. Mann, M. Lundstrom, H. Dai, Phys. Rev. Lett. 92, 106804 (2004).

  79. J.-Y. Park, S. Rosenblatt, Y. Yaish, V. Sazonova, H. Üstünel, S. Braig, T.A. Arias, P.W. Brouwer, P.L. McEuen, Nano Lett. 4, 517 (2004).

  80. M.S. Shur, IEEE Electron Device Lett. 23, 511 (2002).

  81. J. Wang, M. Lundstrom, IEEE Trans. Electron Devices 50, 1604 (2003).

  82. R. Prasher, Phys. Rev. B 77, 075424 (2008).

  83. C. Jeong, R. Kim, M. Luisier, S. Datta, M. Lundstrom, J. Appl. Phys. 107, 023707 (2010).

  84. M.-H. Bae, S. Islam, V.E. Dorgan, E. Pop, ACS Nano 5, 7936 (2011).

  85. A. Behnam, A.S. Lyons, M.-H. Bae, E.K. Chow, S. Islam, C.M. Neumann, E. Pop, Nano Lett. 12, 4424 (2012).

  86. A. Barreiro, M. Lazzeri, J. Moser, F. Mauri, A. Bachtold, Phys. Rev. Lett. 103, 076601 (2009).

  87. V.E. Dorgan, M.H. Bae, E. Pop, Appl. Phys. Lett. 97, 082112 (2010).

  88. V. Perebeinos, P. Avouris, Phys. Rev. B 81, 195442 (2010).

  89. K. Kang, D. Abdula, D.G. Cahill, M. Shim, Phys. Rev. B 81, 165405 (2010).

  90. K.L. Grosse, M.H. Bae, F.F. Lian, E. Pop, W.P. King, Nat. Nanotechnol. 6, 287 (2011).

  91. G.K. Dimitrakakis, E. Tylianakis, G.E. Froudakis, Nano Lett. 8, 3166 (2008).

  92. E. Tylianakis, G.K. Dimitrakakis, S. Melchor, J.A. Dobado, G.E. Froudakis, Chem. Commun. 47, 2303 (2011).

  93. Z.P. Chen, W.C. Ren, L.B. Gao, B.L. Liu, S.F. Pei, H.M. Cheng, Nat. Mater. 10, 424 (2011).

  94. W. Zhang, P. Sherrell, A.I. Minett, J.M. Razal, J. Chen, Energy Environ. Sci. 3, 1286 (2010).

  95. F. Du, D.S. Yu, L.M. Dai, S. Ganguli, V. Varshney, A.K. Roy, Chem. Mater. 23, 4810 (2011).

  96. V. Varshney, S.S. Patnaik, A.K. Roy, G. Froudakis, B.L. Farmer, ACS Nano 4, 1153 (2010).

  97. V. Varshney, A.K. Roy, G. Froudakis, B.L. Farmer, Nanoscale 3, 3679 (2011).

  98. R.K. Paul, M. Ghazinejad, M. Penchev, J.A. Lin, M. Ozkan, C.S. Ozkan, Small 6, 2309 (2010).

  99. L.L. Zhang, Z.G. Xiong, X.S. Zhao, ACS Nano 4, 7030 (2010).

  100. K.H. Yu, G.H. Lu, Z. Bo, S. Mao, J.H. Chen, J. Phys. Chem. Lett. 2, 1556 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Pop.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pop, E., Varshney, V. & Roy, A.K. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin 37, 1273–1281 (2012). https://doi.org/10.1557/mrs.2012.203

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.203

Navigation