Skip to main content
Log in

Quantum plasmonics

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Surface plasmon polaritons, combined excitations of light and free electrons of a metal, have emerged as an alternative information carrier for nanoscale circuitry due to their ability to confine light far below the size of the wavelength. They hold the potential to act as a revolutionary bridge between current diffraction-limited microphotonics and bandwidth-limited nanoelectronics. Interestingly, the nanoscale confinement achievable by plasmons also increases the interaction with quantum emitters, paving the way for quantum applications. Exotic non-classical properties of light such as entanglement and squeezing can be embedded into plasmons and faithfully transmitted and received. Recently, it was also shown that unique coupled plasmonic excitations can be engineered on the nanoscale with artificial media (metamaterials) to enhance and control light-matter interaction. A major departure from the conventional classical description of the plasmon is under development. The aim is to incorporate the “wave” nature of matter manifested in ultra-small metallic nanoparticles and the “particle” nature of light, which can play a role in future integrated circuits with capabilities of quantum information processing. This article reviews developments in the field of quantum nanophotonics, an exciting frontier of plasmonic applications ranging from single photon sources and quantum information transfer to single molecule sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. H.A. Atwater, S. Maier, A. Polman, J.A. Dionne, L. Sweatlock, MRS Bull. 30, 385 (2005).

    CAS  Google Scholar 

  2. A. Akimov, A. Mukherjee, C. Yu, D. Chang, A. Zibrov, P. Hemmer, H. Park, M. Lukin, Nature 450, 402 (2007).

    CAS  Google Scholar 

  3. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information. (Cambridge University Press, UK, 2010).

    Google Scholar 

  4. Z. Jacob, V.M. Shalaev, Science 334, 463 (2011).

    CAS  Google Scholar 

  5. Z. Jacob, J. Kim, G. Naik, A. Boltasseva, E. Narimanov, V. Shalaev, Appl. Phys. B 100, 215 (2010).

    CAS  Google Scholar 

  6. Z. Jacob, I.I. Smolyaninov, E.E. Narimanov, Appl. Phys. Lett. 100, 181105 (2012).

    Google Scholar 

  7. H.N.S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Science 336, 205 (2012).

    CAS  Google Scholar 

  8. E. Altewischer, M. Van Exter, J. Woerdman, Nature 418, 304 (2002).

    CAS  Google Scholar 

  9. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, F.J. García-Vidal, Phys. Rev. Lett. 106, 20501 (2011).

    CAS  Google Scholar 

  10. A. Huck, S. Smolka, P. Lodahl, A.S. Sorensen, A. Boltasseva, J. Janousek, U.L. Andersen, Phys. Rev. Lett. 102, 246802 (2009).

    Google Scholar 

  11. B. Lounis, M. Orrit, Rep. Prog. Phys. 68, 1129 (2005).

    CAS  Google Scholar 

  12. P. Grangier, B. Sanders, J. Vuckovic, New J. Phys. 6 (2004).

  13. T.M. Babinec, B. Hausmann, M. Khan, Y. Zhang, J.R. Maze, P.R. Hemmer, M. Loncar, Nat. Nanotechnol. 5, 195 (2010).

    CAS  Google Scholar 

  14. I. Aharonovich, A.D. Greentree, S. Prawer, Nat. Photonics 5, 397 (2011).

    CAS  Google Scholar 

  15. J.T. Choy, B.J.M. Hausmann, T.M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, M. Lončar, Nat. Photonics 5, 738 (2011).

    CAS  Google Scholar 

  16. A. Huck, S. Kumar, A. Shakoor, U. Andersen, Phys. Rev. Lett. 106, 096801 (2011).

    Google Scholar 

  17. S. Fasel, F. Robin, E. Moreno, D. Erni, N. Gisin, H. Zbinden, Phys. Rev. Lett. 94, 110501 (2005).

    Google Scholar 

  18. C.C. Gerry, P.L. Knight, M. Beck, Am. J. Phys. 73, 1197 (2005).

    Google Scholar 

  19. E. Moreno, F.J. García-Vidal, D. Erni, J.I. Cirac, L. Martín-Moreno, Phys. Rev. Lett. 92, 236801 (2004).

    Google Scholar 

  20. R. Kolesov, B. Grotz, G. Balasubramanian, R.J. Stöhr, A.A.L. Nicolet, P.R. Hemmer, F. Jelezko, J. Wrachtrup, Nat. Phys. 5, 470 (2009).

    CAS  Google Scholar 

  21. D.E. Chang, A.S. Sorensen, E.A. Demler, M.D. Lukin, Nat. Phys. 3, 807 (2007).

    CAS  Google Scholar 

  22. D.J. Bergman, M.I. Stockman, Phys. Rev. Lett. 90, 27402 (2003).

    Google Scholar 

  23. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Nature 460, 1110 (2009).

    CAS  Google Scholar 

  24. F.J. García de Abajo, J. Phys. Chem. C 112, 17983 (2008).

    Google Scholar 

  25. J. Zuloaga, E. Prodan, P. Nordlander, Nano Lett. 9, 887 (2009).

    CAS  Google Scholar 

  26. J. Zuloaga, E. Prodan, P. Nordlander, ACS Nano 4, 5269 (2010).

    CAS  Google Scholar 

  27. J.A. Scholl, A.L. Koh, J.A. Dionne, Nature 483, 421 (2012).

    CAS  Google Scholar 

  28. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer Verlag, NY, 2009).

    Google Scholar 

  29. D.R. Smith, P. Kolinko, D. Schurig, J. Opt. Soc. Am. B: Opt. Phys. 21, 1032 (2004).

    CAS  Google Scholar 

  30. V.A. Podolskiy, E.E. Narimanov, Phys. Rev. B 71, 201101 (2005).

    Google Scholar 

  31. M. Noginov, Y.A. Barnakov, G. Zhu, T. Tumkur, H. Li, E. Narimanov, Appl. Phys. Lett. 94, 151105 (2009).

    Google Scholar 

  32. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A.M. Stacy, X. Zhang, Science 321, 930 (2008).

    CAS  Google Scholar 

  33. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).

    CAS  Google Scholar 

  34. Z. Jacob, L.V. Alekseyev, E. Narimanov, Opt. Express 14, 8247 (2006).

    Google Scholar 

  35. Z. Liu, H. Lee, Y. Xiong, C. Sun, X. Zhang, Science 315, 1686 (2007).

    CAS  Google Scholar 

  36. A.A. Govyadinov, V.A. Podolskiy, Phys. Rev. B 73, 155108 (2006).

    Google Scholar 

  37. Z. Jacob, PhD dissertation, Purdue University (2010).

  38. M. Noginov, H. Li, Y.A. Barnakov, D. Dryden, G. Nataraj, G. Zhu, C. Bonner, M. Mayy, Z. Jacob, E. Narimanov, Opt. Lett. 35, 1863 (2010).

    CAS  Google Scholar 

  39. P. Yao, C. Van Vlack, A. Reza, M. Patterson, M. Dignam, S. Hughes, Phys. Rev. B 80, 195106 (2009).

    Google Scholar 

  40. G.W. Milton, The Theory of Composites (Cambridge University Press, UK, 2002), vol. 6.

    Google Scholar 

  41. J. Elser, V.A. Podolskiy, I. Salakhutdinov, I. Avrutsky, Appl. Phys. Lett. 90, 191109 (2007).

    Google Scholar 

  42. G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1, 1090 (2011).

    CAS  Google Scholar 

  43. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, UK, 2006).

    Google Scholar 

  44. C.L. Cortes, W. Newman, S. Molesky, Z. Jacob, J. Opt. 14, 063001 (2012).

    Google Scholar 

  45. I.M. Lifshitz, Sov. Phys. JETP 11, 1130 (1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zubin Jacob.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacob, Z. Quantum plasmonics. MRS Bulletin 37, 761–767 (2012). https://doi.org/10.1557/mrs.2012.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.175

Navigation