Skip to main content
Log in

Reflecting upon the losses in plasmonics and metamaterials

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Plasmonics aims at combining features of photonics and electronics by coupling photons with a free-electron gas, whose subwavelength oscillations (surface plasmons) enable manipulation of light at the nanoscale and engender the exciting properties of optical metamaterials. Plasmonics is facing a grand challenge of overcoming metal losses impeding its progress. We reflect on the reasons why subwavelength confinement and loss are intimately intertwined and investigate the physics of loss in conductors beyond the conventional Drude model. We suggest that commonly used noble metals may not be the best materials for plasmonics and describe alternate materials such as transparent conducting oxides and transition metal nitrides. We consider the prospects of compensating the loss with gain materials and conclude that the so-far elusive solution to the loss obstacle lies in finding better materials with lower losses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. R.H. Ritchie, Phys. Rev. 106, 874 (1957).

    CAS  Google Scholar 

  2. W.L. Barnes, A. Dereux, T.W. Ebbesen, Nature 424, 824 (2003).

    CAS  Google Scholar 

  3. S.A. Maier, H.A. Atwater, J. Appl. Phys. 98, 1 (2005).

    Google Scholar 

  4. S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, NY, 2007).

    Google Scholar 

  5. S. Lal, S. Link, N.J. Halas, Nat. Photonics 1, 641 (2008).

    Google Scholar 

  6. D.K. Gramotnev, S.I. Bozhevolnyi, Nat. Photonics 4, 83 (2010).

    CAS  Google Scholar 

  7. V.G. Veselago, Sov. Phys. Usp. 10, 509 (1968).

    Google Scholar 

  8. J.B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).

    CAS  Google Scholar 

  9. W. Cai, V.M. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, NY, 2009).

    Google Scholar 

  10. J.B. Pendry, D. Schurig, D.R. Smith, Science 312, 1780 (2006).

    CAS  Google Scholar 

  11. U. Leonhardt, Science 312, 1777 (2006).

    CAS  Google Scholar 

  12. V.M. Shalaev, Science 1, 384 (2008).

    Google Scholar 

  13. A.V. Kildishev, V.M. Shalaev, Opt. Lett. 33, 43 (2008).

    Google Scholar 

  14. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972).

    CAS  Google Scholar 

  15. A. Boltasseva, H.A. Atwater, Science 331, 290 (2011).

    CAS  Google Scholar 

  16. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva., Laser Photonics Rev. 4, 795 (2010).

    CAS  Google Scholar 

  17. E. Feigenbaum, K. Diest, H.A. Atwater, Nano Lett. 10, 2111 (2010).

    CAS  Google Scholar 

  18. J.A. Schuller, E.S. Barnard, W. Cai, Y.C. Jun, J.S. White, M.L. Brongersma, Nat. Mater. 9, 193 (2010).

    CAS  Google Scholar 

  19. N. Papasimakis, Z. Luo, Z.X. Shen, F. De Angelis, E. Di Fabrizio, A.E. Nikolaenko, N.I. Zheludev, Opt. Express 18, 8353 (2010).

    CAS  Google Scholar 

  20. H.A. Atwater, A. Polman, Nat. Mater. 9, 205 (2010).

    CAS  Google Scholar 

  21. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Cengage Learning, KY, 1976).

    Google Scholar 

  22. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, UK, 1997).

    Google Scholar 

  23. J.B. Khurgin, C. Sun, Appl. Phys. Lett. 99, 211106 (2011).

    Google Scholar 

  24. Y.A. Urzhumov, G. Shvets, Solid State Communications 146, 208 (2008).

    CAS  Google Scholar 

  25. P.K. Day, H.G. LeDuc, B.A. Mazin, A. Vayonakis, J. Zmuidzinas, Nature 425, 817 (2003).

    CAS  Google Scholar 

  26. J. Zhou, T. Koschny, M. Kafesaki, E.N. Economou, J.B. Pendry, C.M. Soukoulis, Phys. Rev. Lett. 95, 223902 (2005).

    CAS  Google Scholar 

  27. M.W. Klein, C. Enkrich, M. Wegener, C.M. Soukoulis, S. Linden, Opt. Lett. 31, 1259 (2006).

    CAS  Google Scholar 

  28. J.B. Khurgin, G. Sun, Optics Express, 20, 1539 (2012).

    Google Scholar 

  29. F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006).

    Google Scholar 

  30. D.R. Smith, W.J. Padilla, D.C. Vier, S.C. Nemat-Nasser, S. Schultz, Phys. Rev. Lett. 84, 4184 (2000).

    CAS  Google Scholar 

  31. R.A. Shelby, D.R. Smith, S. Schultz, Science 292, 77 (2001).

    CAS  Google Scholar 

  32. W.J. Padilla, A. Taylor, C. Highstrete, M. Lee, R. Averitt, Phys. Rev. Lett. 96, 107401 (2006).

    CAS  Google Scholar 

  33. E.D. Palik, Handbook of Optical Constants of Solids (Academic Press, New York, 1985).

    Google Scholar 

  34. H.E. Christensen, B.O. Seraphin, Phys. Rev. B 4, 3321 (1971).

    Google Scholar 

  35. M. Liu, M. Pelton, P. Guyot-Sionnest, Phys. Rev. B 79, 035418 (2009).

    Google Scholar 

  36. J.-S.G. Bouillard, W. Dickson, D.P. O’Connor, G.A. Wurtz, A.V. Zayats, Nano Lett. 12, 1561 (2012).

    CAS  Google Scholar 

  37. G.R. Parkins, W.E. Lawrence, R.W. Christy, Phys. Rev. B 23, 6408 (1981).

    CAS  Google Scholar 

  38. W.E. Lawrence, J.W. Wilkins, Phys. Rev. B 7, 2317 (1973).

    CAS  Google Scholar 

  39. R.N. Gurzhi, Zh. Eksp. Teor. Fiz. (Sov. Phys. JETP 6, 506, 1958) 35, 965 (1957).

    Google Scholar 

  40. E. Palik, Handbook of Optical Constants of Solids (Academic, San Diego, CA, 1985).

    Google Scholar 

  41. M.G. Blaber, M.D. Arnold, N. Harris, M.J. Ford, M.B. Cortie, Phys. B 394, 184 (2007).

    CAS  Google Scholar 

  42. G.H. Chan, J. Zhao, E.M. Hicks, G.C. Schatz, D. Van Labeke, Nano Lett. 7, 1947 (2007).

    CAS  Google Scholar 

  43. C. Langhammer, M. Schwind, B. Kasemo, I. Zoric, Nano Lett. 8, 1461 (2008).

    CAS  Google Scholar 

  44. M.G. Blaber, M.D. Arnold, M.J. Ford, J. Phys. Condens. Matter 21, 144211 (2009).

    CAS  Google Scholar 

  45. D.A. Bobb, G. Zhu, M. Mayy, A.V. Gavrilenko, P. Mead, V.I. Gavrilenko, M.A. Noginov, Appl. Phys. Lett. 95, 151102 (2009).

    Google Scholar 

  46. Z. Jacob, L.V. Alekseyev, E.E. Narimanov, Opt. Express 14, 8247 (2006).

    Google Scholar 

  47. N. Engheta, Phys. World 23, 31 (2010).

    Google Scholar 

  48. J.B. Khurgin, G. Sun, Appl. Phys. Lett. 96, 181102 (2010).

    Google Scholar 

  49. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D.N. Leonard, B. Laughlin, G. Duscher, S. Weibel, J. Appl. Phys. 100, 054905 (2006).

    Google Scholar 

  50. G.V. Naik, J. Kim, A. Boltasseva, Opt. Mater. Express 1, 1099 (2011).

    Google Scholar 

  51. M.A. Noginov, L. Gu, J. Livenere, G. Zhu, A.K. Pradhan, R. Mundle, M. Bahoura, Y.A. Barnakov, V.A. Podolskiy, Appl. Phys. Lett. 99, 021101 (2012).

    Google Scholar 

  52. G.V. Naik, J.L. Schroeder, X. Ni, A.V. Kildishev, T.D. Sands, A. Boltasseva, Opt. Mater. Express 2, 478 (2012).

    CAS  Google Scholar 

  53. L. Wang, C. Clavero, K. Yang, E. Radue, M.T. Simons, I. Novikova, R.A. Lukaszew, Opt. Express 20, 8618 (2012).

    CAS  Google Scholar 

  54. T. Minami, MRS Bulletin 25, 38 (2000).

    CAS  Google Scholar 

  55. V. Ern, A.C. Switendick, Phys. Rev. 137, A1927 (1965).

    Google Scholar 

  56. M. Jablan, H. Buljan, M. Soljacic, Phys. Rev. B 80, 245435 (2009).

    Google Scholar 

  57. F.H.L. Koppens, D.E. Chang, J. García de Abajo, Nano Lett. 11, 3370 (2011).

    CAS  Google Scholar 

  58. A.K. Geim, K.S. Novoselov, Nat. Mater. 6, 183 (2007).

    CAS  Google Scholar 

  59. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H.A. Bechtel, X. Liang, A. Zettl, Y.R. Shen, F. Wang, Nat. Nanotechnol. 6, 630 (2011).

    CAS  Google Scholar 

  60. G.V. Naik, A. Boltasseva, Phys. Status Solidi RRL 4, 295 (2010).

    CAS  Google Scholar 

  61. G.V. Naik, A. Boltasseva, Metamaterials 5, 1 (2011).

    CAS  Google Scholar 

  62. U. Guler, G.V. Naik, A. Boltasseva, V.M. Shalaev, A.V. Kildishev, Appl. Phys. A 107, 285 (2012).

    CAS  Google Scholar 

  63. P. Tassin, T. Koschny, M. Kafesaki, C.M. Soukoulis, Nat. Photonics 6, 259 (2012).

    CAS  Google Scholar 

  64. G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, in press (available at http://arxiv.org/abs/1110.3231).

  65. A.J. Hoffman, L. Alekseyev, S.S. Howard, K.J. Franz, D. Wasserman, V.A. Podolskiy, E.E. Narimanov, D.L. Sivco, C. Gmachl, Nat. Mater. 6, 946 (2007).

    CAS  Google Scholar 

  66. C. Rhodes, S. Franzen, J.-P. Maria, M. Losego, D.N. Leonard, B. Laughlin, G. Duscher, S. Weibel, J. Appl. Phys. 100, 054905 (2006).

    Google Scholar 

  67. A. Frölich, M. Wegener, Opt. Mater. Express 1, 883 (2011).

    Google Scholar 

  68. M.A. Noginov, V.A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J.A. Adegoke, B.A. Ritzo, K. Reynolds, Opt. Express 16, 1385 (2008).

    CAS  Google Scholar 

  69. D.J. Bergman, M.I. Stockman, Phys. Rev. Lett. 90, 027402 (2003).

    Google Scholar 

  70. M.I. Stockman, Nat. Photonics 2, 327 (2008).

    CAS  Google Scholar 

  71. M.I. Stockman, J. Opt. 12, 024004 –1 (2010).

    Google Scholar 

  72. M.I. Stockman, Phys. Rev. Lett. 106, 156802 –1 (2011).

    Google Scholar 

  73. M.P. Nezhad, K. Tetz, Y. Fainman, Opt. Express 12, 4072 (2004).

    Google Scholar 

  74. C.-Y. Lu, S.L. Chuang, Opt. Express 19, 13225 (2011).

    CAS  Google Scholar 

  75. M.A. Noginov, G. Zhu, A.M. Belgrave, R. Bakker, V.M. Shalaev, E.E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, Nature 460, 1110 (2009).

    CAS  Google Scholar 

  76. R.F. Oulton, V.J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, Nature 461, 629 (2009).

    CAS  Google Scholar 

  77. M.T. Hill, M. Marell, E.S.P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P.J. van Veldhoven, E.J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C.-Z. Ning, M.K. Smit, Opt. Express 17, 11107 (2009).

    CAS  Google Scholar 

  78. K. Ding, Z.C. Liu, L.J. Yin, M.T. Hill, M.J.H. Marell, P.J. van Veldhoven, R. Nöetzel, C.Z. Ning, Phys. Rev. B 85, 041301 –1 (2012).

    Google Scholar 

  79. S.H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C.M. Lieber, H.-G. Park, Nano Lett. 10, 3679 (2010).

    CAS  Google Scholar 

  80. A.M. Lakhani, M.-K. Kim, E.K. Lau, M.C. Wu, Opt. Express 19, 18237 (2011).

    CAS  Google Scholar 

  81. J.H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M.P. Nezhad, Y. Fainman, Opt. Express 19, 21524 (2011).

    CAS  Google Scholar 

  82. M.P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, A. Mizrahi, L. Feng, V. Lomakin, Y. Fainman, Nat. Photonics 4, 395 (2010).

    CAS  Google Scholar 

  83. M. Khajavikhan, A. Simic, M. Katz, J.H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, Y. Fainman, Nature 482, 204 (2012).

    CAS  Google Scholar 

  84. R.F. Oulton, Nat. Photonics 6, 219 (2012).

    CAS  Google Scholar 

  85. R.F. Oulton, Mater. Today 15, 26 (2012).

    Google Scholar 

  86. R.-M. Ma, R.F. Oulton, V.J. Sorger, X. Zhang, Laser Photonics Rev. (2012), doi:10.1002/lpor.201100040-1.

  87. P. Berini, I.D. Leon, Nat. Photonics 6, 16 (2012).

    CAS  Google Scholar 

  88. M.C. Gather, K. Meerholz, N. Danz, K. Leosson, Nat. Photonics 4, 457 (2010).

    CAS  Google Scholar 

  89. I.D. Leon, P. Berini, Nat. Photonics 4, 382 (2010).

    Google Scholar 

  90. J.B. Khurgin, C. Sun, Appl. Phys. Lett. 100, 011105 (2012).

    Google Scholar 

  91. E.M. Purcell, Phys. Rev. 69, 681 (1946).

    Google Scholar 

  92. L.A. Coldren, C.W. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley-Interscience, NY, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob B. Khurgin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khurgin, J.B., Boltasseva, A. Reflecting upon the losses in plasmonics and metamaterials. MRS Bulletin 37, 768–779 (2012). https://doi.org/10.1557/mrs.2012.173

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.173

Navigation