Skip to main content
Log in

Plasmonic tweezers—The strength of surface plasmons

  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Enhanced and confined optical fields near metallic nanostructures, supporting surface plasmon (SP) resonances, make it possible to enhance the interaction of light with tiny amounts of matter, down to the molecular level. Such capability has been extensively exploited in the framework of optical spectroscopy, nonlinear optics, imaging and integrated optics, among others. Here we discuss the use of plasmonics for optical trapping. Plasmon-based trapping addresses key limitations of conventional optical tweezers formed at the focus of a diffraction-limited laser beam. Beyond permitting trapping of smaller objects, down to the true nanometer scale, they enable parallel trapping from a single beam and can be easily integrated on a chip. SP-based trapping opens new perspectives in a wide range of fields from biology to quantum optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. A. Ashkin, J.M. Dziedzic, J.E. Bjorkholm, S. Chu, Opt. Lett. 11, 288 (1986).

    CAS  Google Scholar 

  2. L. Paterson, M.P. MacDonald, J. Arlt, W. Sibbett, P.E. Bryant, K. Dholakia, Science 292, 912 (2001).

    CAS  Google Scholar 

  3. M.P. MacDonald, G.C. Spalding, K. Dholakia, Nature 426, 421 (2003).

    CAS  Google Scholar 

  4. A. Ashkin, J.M. Dziedzic, T. Yamane, Nature 330, 769 (1987).

    CAS  Google Scholar 

  5. C. Bustamante, Z. Bryant, S.B. Smith, Nature 421, 424 (2003).

    Google Scholar 

  6. C. Girard, A. Dereux, O.J.F. Martin, Phys. Rev. B 49, 13872 (1994).

    CAS  Google Scholar 

  7. L. Novotny, R.X. Bian, X.S. Xie, Phys. Rev. Lett. 79, 645 (1997).

    CAS  Google Scholar 

  8. O.J.F. Martin, C. Girard, Appl. Phys. Lett. 70, 705 (1997).

    Google Scholar 

  9. K. Okamoto, S. Kawata, Phys. Rev. Lett. 83, 4534 (1999).

    CAS  Google Scholar 

  10. Y.G. Song, B.M. Han, S. Chang, Opt. Commun. 198, 7 (2001).

    CAS  Google Scholar 

  11. G. Volpe, R. Quidant, G. Badenes, D. Petrov, Phys. Rev. Lett. 96, 238101 (2006).

    Google Scholar 

  12. V. Garcés-Chávez, R. Quidant, P.J. Reece, G. Badenes, L. Torner, K. Dholakia, Phys. Rev. B 73, 085417 (2006).

    Google Scholar 

  13. K. Wang, E. Schronbrun, K.B. Crozier, Nano Lett. 9, 2623 (2009).

    CAS  Google Scholar 

  14. M. Righini, A.S. Zelenina, C. Girard, R. Quidant, Nat. Phys. 3, 477 (2007).

    CAS  Google Scholar 

  15. L. Huang, S.J. Maerkl, O.J.F. Martin, Opt. Express 17, 6018 (2009).

    CAS  Google Scholar 

  16. H.M.K. Wong, M. Righini, J.C. Gates, P.G.R. Smith, V. Pruneri, R. Quidant, Appl. Phys. Lett. 99, 061107 (2011).

    Google Scholar 

  17. J.S. Donner, G. Baffou, D. McCloskey, R. Quidant, ACS Nano 5, 5457 (2011).

    CAS  Google Scholar 

  18. W. Zhu, M.G. Banaee, D. Wang, Y. Chu, K.B. Crozier, Small 7, 1761 (2011).

    CAS  Google Scholar 

  19. S.S. A ć imovi ć, M.P. Kreuzer, M.U. González, R. Quidant, ACS Nano 3, 1231 (2009).

    Google Scholar 

  20. H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny, Phys. Rev. Lett. 108, 217403 (2012).

    Google Scholar 

  21. H. Xu, M. Käll, Phys. Rev. Lett. 89, 246802 (2002).

    Google Scholar 

  22. A.N. Grigorenko, N.W. Roberts, M.R. Dickinson, Y. Zhang, Nat. Photonics 2, 365 (2008).

    CAS  Google Scholar 

  23. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F.J. García de Abajo, R. Quidant, Nano Lett. 9, 3387 (2009).

    CAS  Google Scholar 

  24. Y. Tsuboi, T. Shoji, N. Kitamura, M. Takase, K. Murakoshi, Y. Mizumoto, H. Ishihara, J. Phys. Chem. Lett. 1, 2327 (2010).

    CAS  Google Scholar 

  25. W. Zhang, L. Huang, C. Santschi, O.J.F. Martin, Nano Lett. 10, 1006 (2010).

    Google Scholar 

  26. A. Ashkin, J.M. Dziedzic, Appl. Phys. Lett. 30, 202 (1977).

    Google Scholar 

  27. R.M. Simmons, J.T. Finer, S. Chu, J.A. Spudich, Biophys. J. 70, 1813 (1996).

    CAS  Google Scholar 

  28. A.E. Wallin, H. Ojala, E. Hæggström, R. Tuma, Appl. Phys. Lett. 92, 224104 (2008).

    Google Scholar 

  29. K.A. Willets, R.P. Van Duyne, Physical Chemistry 58, 267 (2007).

    CAS  Google Scholar 

  30. A.H.J. Yang, S.D. Moore, B.S. Schmidt, M. Klug, M. Lipson, D. Erickson, Nature 457, 71 (2009).

    CAS  Google Scholar 

  31. R. Sainidou, F.J. García de Abajo, Phys. Rev. Lett. 101, 136802 (2008).

    CAS  Google Scholar 

  32. M.L. Juan, R. Gordon, Y. Pang, F. Eftekhari, R. Quidant, Nat. Phys. 5, 915 (2009).

    CAS  Google Scholar 

  33. C. Chen, M.L. Juan, Y. Li, G. Maes, G. Borghs, P. van Dorpe, R. Quidant, Nano Lett. 12, 125 (2012).

    CAS  Google Scholar 

  34. Y. Pang, R. Gordon, Nano Lett. 11, 3763 (2011).

    CAS  Google Scholar 

  35. Y. Pang, R. Gordon, Nano Lett. 12, 402 (2012).

    CAS  Google Scholar 

  36. N. Verellen, Y. Sonnefraud, H. Sobhani, F. Hao, V.V. Moshchalkov, P. Van Dorpe, P. Nordlander, S.A. Maier, Nano Lett. 9, 1663 (2009).

    CAS  Google Scholar 

  37. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, H. Giessen, Nano Lett. 10, 1103 (2010).

    CAS  Google Scholar 

  38. A.B. Evlyukhin, S.I. Bozhevolnyi, A. Pors, M.G. Nielse, I.P. Radko, M. Willatzen, O. Albrektsen, Nano Lett. 10, 4571 (2010).

    CAS  Google Scholar 

  39. V.I. Balykin, V.S. Letokhov, V.V. Klimov, Opt. Photonics News 16, 44 (2005).

    CAS  Google Scholar 

  40. V.V. Klimov, S.K. Sekatskii, G. Dietler, Opt. Commun. 259, 883 (2006).

    CAS  Google Scholar 

  41. D.E. Chang, J.D. Thompson, H. Park, V. Vuletic, A.S. Zibrov, P. Zoller, M.D. Lukin, Phys. Rev. Lett. 103, 123004 (2009).

    CAS  Google Scholar 

  42. C. Stehle, H. Bender, C. Zimmermann, D. Kern, M. Fleischer, S. Slama, Nat. Photonics 5, 494 (2011).

    CAS  Google Scholar 

  43. M.L. Juan, M. Righini, R. Quidant, Nature Photon. 5, 349 (2011).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Quidant.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quidant, R. Plasmonic tweezers—The strength of surface plasmons. MRS Bulletin 37, 739–744 (2012). https://doi.org/10.1557/mrs.2012.172

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.172

Navigation