Skip to main content

Advertisement

Log in

Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level

  • Scanning probes for new energy materials: Probing local structure and function
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Atomistic and nanometer scale mechanisms of electrochemical reactions and ionic flows in solids in the nanometer–micron range persist as terra incognito in modern science. While structural and electronic phenomena are now accessible to electron and scanning probe microscopy (SPM) techniques, probing nanoscale electrochemistry requires the capability to probe local ionic currents. Here, we discuss principles and applications of electrochemical strain microscopy (ESM), a technique based on probing minute deformations induced by electric bias applied to an SPM tip. ESM imaging and spectroscopy are illustrated for several energy storage and conversion materials. We further argue that down-scaling of physical device structures based on oxides necessitates ionic and electrochemical effects to be taken into account. Future pathways for ESM development are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J.M. Tarascon, M. Armand, Nature 414 (6861), 359 (2001).

    Google Scholar 

  2. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater. 10 (10), 725 (1998).

    Google Scholar 

  3. A.K. Tagantsev, I. Stolichnov, E.L. Colla, N. Setter, J. Appl. Phys. 90 (3), 1387 (2001).

    Google Scholar 

  4. S.B. Adler, Chem. Rev. 104 (10), 4791 (2004).

    Google Scholar 

  5. V.S. Bagotsky, Fuel Cells: Problems and Solutions (Wiley, NY, 2009).

    Google Scholar 

  6. C. Gerber, H.P. Lang, Nat. Nanotechnol. 1 (1), 3 (2006).

    Google Scholar 

  7. S.H. Pan, E.W. Hudson, K.M. Lang, H. Eisaki, S. Uchida, J.C. Davis, Nature 403 (6771), 746 (2000).

    Google Scholar 

  8. P. Roushan, J. Seo, C.V. Parker, Y.S. Hor, D. Hsieh, D. Qian, A. Richardella, M.Z. Hasan, R.J. Cava, A. Yazdani, Nature 460 (7259), 1106 (2009).

    Google Scholar 

  9. M. Fath, S. Freisem, A.A. Menovsky, Y. Tomioka, J. Aarts, J.A. Mydosh, Science 285 (5433), 1540 (1999).

    Google Scholar 

  10. S.W. Wu, N. Ogawa, W. Ho, Science 312 (5778), 1362 (2006).

    Google Scholar 

  11. M. Rief, F. Oesterhelt, B. Heymann, H.E. Gaub, Science 275 (5304), 1295 (1997).

    Google Scholar 

  12. S. Jesse, B.J. Rodriguez, S. Choudhury, A.P. Baddorf, I. Vrejoiu, D. Hesse, M. Alexe, E.A. Eliseev, A.N. Morozovska, J. Zhang, L.Q. Chen, S.V. Kalinin, Nat. Mater. 7 (3), 209 (2008).

    Google Scholar 

  13. S.V. Kalinin, S. Jesse, B.J. Rodriguez, Y.H. Chu, R. Ramesh, E.A. Eliseev, A.N. Morozovska, Phys. Rev. Lett. 100, 15 (2008).

    Google Scholar 

  14. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, G. Yushin, Nat. Mater. 9 (4), 353 (2010).

    Google Scholar 

  15. S.V. Kalinin, N. Balke, Adv. Mater. 22 (35), E193 (2010).

    Google Scholar 

  16. R. Kostecki, F. McLarnon, Appl. Phys. Lett. 76 (18), 2535 (2000).

    Google Scholar 

  17. M. Lee, R. O’Hayre, F.B. Prinz, T.M. Gur, Appl. Phys. Lett. 85 (16), 3552 (2004).

    Google Scholar 

  18. D. Alliata, R. Kotz, P. Novak, H. Siegenthaler, Electrochem. Commun. 2 (6), 436 (2000).

    Google Scholar 

  19. R. Garcia, M. Calleja, F. Perez-Murano, Appl. Phys. Lett. 72 (18), 2295 (1998).

    Google Scholar 

  20. R. Garcia, N.S. Losilla, J. Martinez, R.V. Martinez, F.J. Palomares, Y. Huttel, M. Calvaresi, F. Zerbetto, Appl. Phys. Lett. 96, 14 (2010).

    Google Scholar 

  21. R. Garcia, R.V. Martinez, J. Martinez, Chem. Soc. Rev. 35 (1), 29 (2006).

    Google Scholar 

  22. Y. Tian, A. Timmons, J.R. Dahn, J. Electrochem. Soc. 156 (3), A187 (2009).

    Google Scholar 

  23. F. Vullum, D. Teeters, J. Power Sources 146 (1–2), 804 (2005).

    Google Scholar 

  24. W. Lee, M. Lee, Y.B. Kim, F.B. Prinz, Nanotechnology 20, 44 (2009).

    Google Scholar 

  25. A. Taskiran, A. Schirmeisen, H. Fuchs, H. Bracht, B. Roling, Phys. Chem. Chem. Phys. 11 (26), 5499 (2009).

    Google Scholar 

  26. A. Schirmeisen, A. Taskiran, H. Fuchs, H. Bracht, S. Murugavel, B. Roling, Phys. Rev. Lett. 98, 22 (2007).

    Google Scholar 

  27. T.M. McEvoy, K.J. Stevenson, Langmuir 21 (8), 3521 (2005).

    Google Scholar 

  28. R. Shao, S.V. Kalinin, D.A. Bonnell, Appl. Phys. Lett. 82 (12), 1869 (2003).

    Google Scholar 

  29. R. O’Hayre, M. Lee, F.B. Prinz, J. Appl. Phys. 95 (12), 8382 (2004).

    Google Scholar 

  30. L.S.C. Pingree, E.F. Martin, K.R. Shull, M.C. Hersam, IEEE Trans. Nanotechnol. 4 (2), 255 (2005).

    Google Scholar 

  31. M.W. Louie, A. Hightower, S.M. Haile, ACS Nano 4 (5), 2811 (2010).

    Google Scholar 

  32. N. Balke, S. Jesse, A.N. Morozovska, E. Eliseev, D.W. Chung, Y. Kim, L. Adamczyk, R.E. Garcia, N. Dudney, S.V. Kalinin, Nat. Nanotechnol. 5 (10), 749 (2010).

    Google Scholar 

  33. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, A. Tselev, I.N. Ivanov, N.J. Dudney, S.V. Kalinin, Nano Lett. 10 (9), 3420 (2010).

    Google Scholar 

  34. A.N. Morozovska, E.A. Eliseev, N. Balke, S.V. Kalinin, J. Appl. Phys. 108, 5 (2010).

    Google Scholar 

  35. A. Gruverman, A. Kholkin, Rep. Prog. Phys. 69 (8), 2443 (2006).

    Google Scholar 

  36. A. Gruverman, O. Auciello, H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101 (1998).

    Google Scholar 

  37. S.V. Kalinin, A.N. Morozovska, L.Q. Chen, B.J. Rodriguez, Rep. Prog. Phys. 73, 5 (2010).

    Google Scholar 

  38. N. Balke, I. Bdikin, S.V. Kalinin, A.L. Kholkin, J. Am. Ceram. Soc. 92 (8), 1629 (2009).

    Google Scholar 

  39. P. Bintachitt, S. Trolier-McKinstry, K. Seal, S. Jesse, S.V. Kalinin, Appl. Phys. Lett. 94, 4 (2009).

    Google Scholar 

  40. S. Jesse, S. Guo, A. Kumar, B.J. Rodriguez, R. Proksch, S.V. Kalinin, Nanotechnology 21, 40 (2010).

    Google Scholar 

  41. B.J. Rodriguez, C. Callahan, S.V. Kalinin, R. Proksch, Nanotechnology 18, 47 (2007).

    Google Scholar 

  42. A.B. Kos, D.C. Hurley, Meas. Sci. Technol. 19, 1 (2008).

    Google Scholar 

  43. S. Jesse, S.V. Kalinin, J. Phys. D: Appl. Phys. 44, 46 (2011).

    Google Scholar 

  44. S. Jesse, S.V. Kalinin, R. Proksch, A.P. Baddorf, B.J. Rodriguez, Nanotechnology 18, 43 (2007).

    Google Scholar 

  45. S. Guo, S. Jesse, S. Kalnaus, N. Balke, C. Daniel, S.V. Kalinin, J. Electrochem. Soc. 158 (8), A982 (2011).

    Google Scholar 

  46. S. Jesse, N. Balke, E. Eliseev, A. Tselev, N.J. Dudney, A.N. Morozovska, S.V. Kalinin, ACS Nano 5 (12), 9682 (2011).

    Google Scholar 

  47. G.G. Amatucci, J.M. Tarascon, L.C. Klein, J. Electrochem. Soc. 143 (3), 1114 (1996).

    Google Scholar 

  48. S.B. Adler, J. Am. Ceram. Soc. 84 (9), 2117 (2001).

    Google Scholar 

  49. X.Y. Chen, J.S. Yu, S.B. Adler, Chem. Mater. 17 (17), 4537 (2005).

    Google Scholar 

  50. V.V. Kharton, F.M.B. Marques, A. Atkinson, Solid State Ionics 174 (1–4), 135 (2004).

    Google Scholar 

  51. A. Kumar, F. Ciucci, A.N. Morozovska, S.V. Kalinin, S. Jesse, Nat. Chem. 3 (9), 707 (2011).

    Google Scholar 

  52. S.V. Kalinin, S. Jesse, A. Tselev, A.P. Baddorf, N. Balke, ACS Nano 5 (7), 5683 (2011).

    Google Scholar 

  53. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Solid State Ionics 135 (1–4), 33 (2000).

    Google Scholar 

  54. N. Balke, S. Jesse, Y. Kim, L. Adamczyk, I.N. Ivanov, N.J. Dudney, S.V. Kalinin, ACS Nano 4 (12), 7349 (2010).

    Google Scholar 

  55. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, Y. Cui, Nat. Nanotechnol. 3 (1), 31 (2008).

    Google Scholar 

  56. A.N. Morozovska, E.A. Eliseev, A.K. Tagantsev, S.L. Bravina, L.Q. Chen, S.V. Kalinin, Phys. Rev. B 83, 19 (2011).

    Google Scholar 

  57. F. Ciucci, W.C. Chueh, D.G. Goodwin, S.M. Haile, Phys. Chem. Chem. Phys. 13 (6), 2121 (2011).

    Google Scholar 

  58. W. Lai, F. Ciucci, Electrochim. Acta 56 (1), 531 (2010).

    Google Scholar 

  59. G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, W. Wilcke, J. Phys. Chem. Lett. 1 (14), 2193 (2010).

    Google Scholar 

  60. J.B. Goodenough, Y. Kim, Chem. Mater. 22 (3), 587 (2010).

    Google Scholar 

  61. R. Waser, R. Dittmann, G. Staikov, K. Szot, Adv. Mater. 21 (25–26), 2632 (2009).

    Google Scholar 

  62. T.M. Arruda, A. Kumar, S.V. Kalinin, S. Jesse, Nano Lett. 11 (10), 4161 (2011).

    Google Scholar 

  63. N.C. Bristowe, P.B. Littlewood, E. Artacho, Phys. Rev. B 83, 20 (2011).

    Google Scholar 

  64. F. Bi, D.F. Bogorin, C. Cen, C.W. Bark, J.W. Park, C.B. Eom, J. Levy, Appl. Phys. Lett. 97, 17 (2010).

    Google Scholar 

  65. R.V. Wang, D.D. Fong, F. Jiang, M.J. Highland, P.H. Fuoss, C. Thompson, A.M. Kolpak, J.A. Eastman, S.K. Streiffer, A.M. Rappe, G.B. Stephenson, Phys. Rev. Lett. 102, 4 (2009).

    Google Scholar 

  66. N. Sai, A.M. Kolpak, A.M. Rappe, Phys. Rev. B 72, 2 (2005).

    Google Scholar 

  67. H.T. Yi, T. Choi, S.G. Choi, Y.S. Oh, S.W. Cheong, Adv. Mater. 23 (30), 3403 (2011).

    Google Scholar 

  68. W. Jiang, M. Noman, Y. M. Lu, J.A. Bain, P.A. Salvador, M. Skowronski, J. Appl. Phys. 110, 3 (2011).

    Google Scholar 

  69. J. Fleig, A. Schintlmeister, A.K. Opitz, H. Hutter, Scr. Mater. 65 (2), 78 (2011).

    Google Scholar 

  70. N.A. Spaldin, M. Fiebig, Science 309 (5733), 391 (2005).

    Google Scholar 

  71. Y. Kim, A.S. Disa, T.E. Babakol, J.D. Brock, Appl. Phys. Lett. 96, 25 (2010).

    Google Scholar 

  72. S. Kalinin, N. Balke, S. Jesse, A. Tselev, A. Kumar, T.M. Arruda, S. Guo, R. Proksch, Mater. Today 14, 548 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Jesse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jesse, S., Kumar, A., Arruda, T.M. et al. Electrochemical strain microscopy: Probing ionic and electrochemical phenomena in solids at the nanometer level. MRS Bulletin 37, 651–658 (2012). https://doi.org/10.1557/mrs.2012.144

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2012.144

Navigation