Skip to main content
Log in

Electron flow and biofilms

  • All Together Now: Integrating Biofilm Research Across Disciplines
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Bacteria living in surface-attached biofilm communities must maintain electrochemical gradients to support basic cellular functions, including chemo-osmotic transport and adenosine triphosphate synthesis. Central to this is the maintenance of electron flow to terminal electron acceptors. These acceptors can be soluble inorganic and organic molecules, such as oxygen, nitrate, sulfate, dimethyl sulfoxide, or fumarate, or solid metal oxides, such as Fe(III) and Mn(IV) oxides. When electrons are transferred to a solid substrate, they may be (1) carried directly to the acceptor via outer membrane cytochromes, (2) carried by electron shuttle molecules, (3) transferred along conductive protein nanowires, or (4) conducted through other extracellular matrices. No matter what the electron acceptor is, in the laboratory, bacterial biofilms are frequently studied while growing on inert surfaces, incapable of electron transfer. However, in natural environments, as well as many industrial and biotechnology settings, biofilms grow on electrically active surfaces. In this review, we propose that the study of bacterial biofilms on redox-active surfaces is important both for the development of industrial processes, such as microbial fuel cells and wastewater treatment systems, as well as for our understanding of how these communities of microbes affect global nutrient cycling, other geobiological processes, and even human disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. K.H. Nealson, R.R. Rye, Treatise on Geochemistry (Elsevier Pergammon, Amsterdam, 2003), Vol. 8, pp. 41.

    Google Scholar 

  2. D.J. White, The Physiology and Biochemistry of Prokaryotes, 3rd Edition (Oxford University Press, New York, NY, 2007).

    Google Scholar 

  3. W. Stumm, J.J. Morgan, Aquatic Chemistry, 3rd Edition (Wiley-Interscience, New York, NY, 1996).

    Google Scholar 

  4. M.T. Madigan, J.M. Martinko, Brock Biology of Microorganisms, 11th Edition (Pearson Prentice Hall, Upper Saddle River, NJ, 2006).

    Google Scholar 

  5. C. Aguilar, K.H. Nealson, Can. J. Fish. Aquat. Sci. 51, 185 (1994).

    Google Scholar 

  6. W. Dean, W.S. Moore, K.H. Nealson, Chem. Geol. 34, 53 (1981).

    Google Scholar 

  7. C.R. Myers, K.H. Nealson, Science 240, 1319 (1988).

    Google Scholar 

  8. C.R. Myers, K.H. Nealson, J. Bacteriol. 172, 6232 (1990).

    Google Scholar 

  9. D.R. Lovley, E.J. Phillips, Appl. Environ. Microbiol. 54, 1472 (1988).

    Google Scholar 

  10. D.R. Lovley, S.J. Giovannoni, D.C. White, J.E. Champine, E.J. Phillips, Y.A. Gorby, S. Goodwin, Arch. Microbiol. 159, 336 (1993).

    Google Scholar 

  11. E. Marsili, Proc. Natl. Acad. Sci. U.S.A. 105, 3968 (1988).

    Google Scholar 

  12. H. von Canstein, J. Ogawa, S. Shimuzu, J.R. Lloyd, Appl. Environ. Microbiol. 74, 615 (2008).

    Google Scholar 

  13. Y.A. Gorby, S. Yanina, J.S. McLean, K.M. Rosso, D. Moyles, A. Dohnalkova, T.J. Beveridge, I.-S. Chang, B.-H. Kim, K.-S. Kim, D.E. Culley, S.B. Reed, M.F. Romine, D.A. Saffarini, E.A. Hill, L. Shi, D.A. Elias, D.W. Kennedy, G. Pinchuk, K. Watanabe, S. Ishii, B. Logan, K.H. Nealson, J.K. Fredrickson, Proc. Natl. Acad. Sci. U.S.A. 103, 11358 (1996).

    Google Scholar 

  14. M. El-Naggar, Y.A. Gorby, W. Xia, K.H. Nealson, Biophys. J. 95, 10 (2008).

    Google Scholar 

  15. M. El-Naggar, G. Wanger, K.M. Leung, T.D. Yuzvinsky, G. Southam, J. Yang, W.W. Lau, K.H. Nealson, Y.A. Gorby, Proc. Natl. Acad. Sci. U.S.A. 107, 18127 (2010).

    Google Scholar 

  16. G. Reguera, K.D. McCarthy, T. Mehta, J.S. Nicoll, M.T. Tuominen, D.R. Lovley, Nature 435, 1098 (2005).

    Google Scholar 

  17. G. Reguera, K.P. Nevin, J.S. Nicoll, S.F. Covalla, T.L. Woodard, D.R. Lovley, Appl. Environ. Microbiol. 72, 7345 (2006).

    Google Scholar 

  18. S. Kato, R. Nakamura, F. Kai, K. Watanabe, K. Hashimoto, Environ. Microbiol. 12, 3114 (2010).

    Google Scholar 

  19. L.P. Nielsen, N. Risgaard-Petersen, H. Fossing, P.B. Christensen, M. Sayama, Nature 463, 1071 (2010).

    Google Scholar 

  20. B.H. Kim, Biotechnol. Tech. 13, 475 (1999).

    Google Scholar 

  21. J.S. McLean, G. Wange, Y.A. Gorby, M. Wainstein, J. McQuaid, S.I. Ishii O. Bretschger, H. Beyenal, K.H. Nealson., Environ. Sci. Technol. 44, 2721 (2010).

    Google Scholar 

  22. K. Rabaey, J. Rodriguez, L.L. Blackall, J. Keller, P. Gross, D. Batstone, W. Verstraete, K.H. Nealson, ISME J. 1, 9 (2007).

    Google Scholar 

  23. K. Rabaey, R.A. Rozendal, Nat. Rev. Microbiol. 8, 706 (2010).

    Google Scholar 

  24. B.E. Logan, J.M. Regan, Trends Microbiol. 14, 512 (2006).

    Google Scholar 

  25. B.E. Logan, Nat. Rev. Microbiol. 7, 375 (2009).

    Google Scholar 

  26. D.R. Lovley, Nat. Rev. Microbiol. 17, 327 (2006).

    Google Scholar 

  27. D.R. Lovley, Curr. Opin. Biotechnol. 19, 564 (2008).

    Google Scholar 

  28. A. Beliaev, D. Saffarini, J. Bacteriol. 180, 6292 (1998).

    Google Scholar 

  29. J.M. Myers, C.R. Muers, Appl. Environ. Microbiol. 67, 260 (2001).

    Google Scholar 

  30. O. Bretschger, A. Obraztsova, C.A. Sturm, I.S. Chang, Y.A. Gorby, S.B. Reed, D.E. Culley, C.L. Reardon, S. Barua, M.F. Romine, J. Zhou, A.S. Beliaev, R. Bouhenni, D. Saffarini, F. Mansfeld, B.H. Kim, J.K. Fredrickson, K.H. Nealson, Appl. Environ. Microbiol. 73, 7003 (2007).

    Google Scholar 

  31. L. Hall-Stoodley, J.W. Costerton, P. Stoodley, Nat. Rev. Microbiol. 2 (2), 95 (2004).

    Google Scholar 

  32. J. Kan, L. Hsu, A.C. Cheung, M. Pirbazari, K.H. Nealson, Environ Sci. Technol. 45, 1139 (2011).

    Google Scholar 

  33. J.C. Thrash, J.D. Coates, Environ. Sci. Technol. 42, 3921 (2008).

    Google Scholar 

  34. C.I. Torres, R. Krajmalnik-Brown, P. Parameswaran, A.K. Marcus, G. Wanger, Y.A. Gorby, B.E. Rittmann, Environ. Sci. Technol. 43, 9519 (2009).

    Google Scholar 

  35. J.C. Biffinger, J. Pietron, O. Bretschger, L.J. Nadeau, G.R. Johnson, C.C. Williams, K.H. Nealson, B.R. Ringeisen, Biosens. Bioelectron. 24, 906 (2008).

    Google Scholar 

  36. S.K. Hansen, P.B. Rainey, J.A. Haagensen, S. Molin, Nature 445, 533 (2007).

    Google Scholar 

  37. B.R. Boles, P.K. Singh, Proc. Natl. Acad. Sci. U.S.A. 105, 12503 (2008).

    Google Scholar 

  38. A.M. Kraigsley, S.E. Finkel, FEMS Microbiol. Lett. 293, 135 (2009).

    Google Scholar 

  39. W. Stumm, J.J. Morgan, Aquatic chemistry: Chemical equilibria and rates in natural waters. 3rd edition. (John Wiley & Sons, Inc. New York, 1996), p. 1022.

    Google Scholar 

Download references

Acknowledgements

Work in the Nealson and Finkel labs is supported, in part, by a Multi-University Research Initiative (MURI) grant from the U.S. Air Force Office of Scientific Research (FA-9550-06-1-0292).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth H. Nealson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nealson, K.H., Finkel, S.E. Electron flow and biofilms. MRS Bulletin 36, 380–384 (2011). https://doi.org/10.1557/mrs.2011.69

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.69

Navigation