Skip to main content
Log in

Ferroelectric and multiferroic tunnel junctions

  • Resistive switching phenomena in thin films: Materials, devices, and applications
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The phenomenon of electron tunneling has been known since the advent of quantum mechanics, but continues to enrich our understanding of many fields of physics, as well as creating sub-fields on its own. Spin-dependent tunneling in magnetic tunnel junctions has aroused considerable interest and development. In parallel with this endeavor, recent advances in thin-film ferroelectrics have demonstrated the possibility of achieving stable and switchable ferroelectric polarization in nanometer-thick films. This discovery opened the possibility of using thin-film ferroelectrics as barriers in magnetic tunnel junctions, thus merging the fields of magnetism, ferroelectricity, and spin-polarized transport into an exciting and promising area of novel research. Nowadays, this research has become an important constituent of a broader effort in multiferroic materials and heterostructures that involves rich fundamental science and offers a potential for applications in novel multifunctional devices. The purpose of this article is to review recent developments in ferroelectric and multiferroic tunnel junctions. Starting from the concept of electron tunneling, we first discuss the key properties of magnetic tunnel junctions and then assess key functional characteristics of ferroelectric and multiferroic tunnel junctions. We discuss the recent demonstrations of giant resistive switching observed in ferroelectric tunnel junctions and the new concept of electrically controlling the spin polarization in magnetic tunnel junctions with a ferroelectric tunnel barrier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. J. Frenkel, Phys. Rev. 36, 1604 (1930).

    Article  Google Scholar 

  2. B.D. Josephson, Rev. Mod. Phys. 46, 251 (1974).

  3. G. Binnig, H. Rohrer, Rev. Mod. Phys. 59, 615 (1987).

  4. R.H. Fowler, L. Nordheim, Proc. R. Soc. London 119, 173 (1928).

  5. C. Chappert, A. Fert, F.N. Van Dau, Nat. Mater. 6, 813 (2007).

  6. E.Y. Tsymbal, I. Žutić, Eds. Handbook of Spin Transport and Magnetism, (Taylor & Francis, NY, 2011).

  7. P.M. Tedrow, R. Meservey, Phys. Rev. Lett. 26, 192 (1971).

  8. M. Jullière, Phys. Lett. A 54, 225 (1975).

  9. J.S. Moodera, L.R. Kinder, T.M. Wong, R. Meservey, Phys. Rev. Lett. 74, 3273 (1995).

  10. T. Miyazaki, N.J. Tezuka, J. Magn. Mag. Mater. 139, L231 (1995).

  11. E.Y. Tsymbal, O.N. Mryasov, P.R. LeClair, J. Phys.: Condens. Matter 15, R109 (2003); E.Y. Tsymbal, K.D. Belashchenko, J. Velev, S.S. Jaswal, M. van Schilfgaarde, I.I. Oleynik, D.A. Stewart, Prog. Mater. Science. 52, 401 (2007).

  12. D. Wang, C. Nordman, J. Daughton, Z. Qian, J. Fink, IEEE Trans. Magn. 40, 2269 (2004).

  13. D.J. Monsma, S.S.S. Parkin, Appl. Phys. Lett. 77, 720 (2000).

  14. W.H. Butler, X.-G. Zhang, T.C. Schulthess, J.M. MacLaren, Phys. Rev. B 63, 054416 (2001).

  15. J. Mathon, A. Umerski, Phys. Rev. B 63, R220403 (2001).

  16. S.S.P. Parkin, C. Kaiser, A. Panchula, P.M. Rice, B. Hughes, Nat. Mater. 3, 862 (2004).

  17. S. Yuasa, T. Nagahama, A. Fukushima, Y. Suzuki, K. Ando, Nat. Mater. 3, 868 (2004).

  18. S. Yuasa, A. Fukushima, H. Kubota, Y. Suzuki, K. Ando, Appl. Phys. Lett. 89, 042505 (2006).

  19. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y.M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, H. Ohno, Appl. Phys. Lett. 93, 082508 (2008).

  20. E.Y. Tsymbal, H. Kohlstedt, Science 313, 181 (2006).

  21. R. Waser, M. Aono, Nat. Mater. 6, 833 (2007).

  22. L. Esaki, R.B. Laibowitz, P.J. Stiles, IBM Tech. Discl. Bull. 13, 2161 (1971).

  23. D.D. Fong, G.B. Stephenson, S.K. Streiffer, J.A. Eastman, O. Auciello, P.H. Fuoss, C. Thompson, Science 304, 1650 (2004).

  24. C. Lichtensteiger, J.-M. Triscone, J. Junquera, P. Ghosez, Phys. Rev. Lett. 94, 047603 (2005).

  25. D.A. Tenne, A. Bruchhausen, N.D. Lanzillotti-Kimura, A. Fainstein, R.S. Katiyar, A. Cantarero, A. Soukiassian, V. Vaithyanathan, J.H. Haeni, W. Tian, D.G. Schlom, K.J. Choi, D.M. Kim, C.B. Eom, H.P. Sun, X.Q. Pan, Y.L. Li, L.Q. Chen, Q.X. Jia, S.M. Nakhmanson, K.M. Rabe, X.X. Xi, Science 313, 1614 (2006).

  26. M.Y. Zhuravlev, R.F. Sabirianov, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. Lett. 94, 246802 (2005); Phys. Rev. Lett. 102, 169901 (2009).

  27. J.P. Velev, C.-G. Duan, K.D. Belashchenko, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. Lett. 98, 137201 (2007).

  28. H. Kohlstedt, N.A. Pertsev, J. Rodríguez Contreras, R. Waser, Phys. Rev. B 72, 125341 (2005).

  29. N.F. Hinsche, M. Fechner, P. Bose, S. Ostanin, J. Henk, I. Mertig, P. Zahn, Phys. Rev. B 82, 214110 (2010).

  30. D. Wortmann, S. Blügel, Phys. Rev. B 83, 155114 (2011).

  31. J.D. Burton, E.Y. Tsymbal, Phys. Rev. B 80, 174406 (2009); Phys. Rev. Lett. 106, 157203 (2011).

  32. H. Kohlstedt, A. Petraru, K. Szot, A. Ruediger, P. Meuffels, H. Haselier, R. Waser, V. Nagarajan, Appl. Phys. Lett. 92, 062907 (2008).

  33. J. Rodríguez Contreras, H. Kohlstedt, U. Poppe, R. Waser, C. Buchal, N.A. Pertsev, Appl. Phys. Lett. 83, 4595 (2003).

  34. A. Gruverman, O. Auciello, H. Tokumoto, Annu. Rev. Mater. Sci. 28, 101 (1998).

  35. C. Yoshida, A. Yoshida, H. Tamura, Appl. Phys. Lett. 75, 1449 (1999).

  36. V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur, A. Barthélémy, M. Bibes, Nature 460, 81 (2009).

  37. P. Maksymovych, S. Jesse, P. Yu, R. Ramesh, A.P. Baddorf, S.V. Kalinin, Science 324, 1421 (2009).

  38. A. Gruverman, D. Wu, H. Lu, Y. Wang, H.W. Jang, C.M. Folkman, M.Y. Zhuravlev, D. Felker, M. Rzchowski, C.-B. Eom, E.Y. Tsymbal, Nano Lett. 9, 3539 (2009).

  39. A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, A.H.G. Vlooswijk, G. Rispens, B. Noheda, M. Bibes, A. Barthélémy, Appl. Phys. Lett. 96, 042901 (2010).

  40. V. Nagarajan, J. Junquera, J.Q. He, C.L. Jia, R. Waser, K. Lee, Y.K. Kim, S. Baik, T. Zhao, R. Ramesh, P. Ghosez, K.M. Rabe, J. Appl. Phys. 100, 051609 (2006).

  41. D. Pantel, S. Goetze, D. Hesse, M. Alexe, ACS Nano 5, 6032 (2011); A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N.D. Mathur, M. Bibes, A. Barthélémy, Nature Nanotech. doi: 10.1038/nnano. 2011.213.

  42. H. Schmid, Ferroelectrics 161, 1 (1994).

  43. M. Fiebig, J. Phys. D 38, R123 (2005).

  44. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006).

  45. R. Ramesh, N.A. Spaldin, Nat. Mater. 6, 21 (2007).

  46. M. Bibes, A. Barthélémy, IEEE Trans. Electron Devices 54, 1003 (2007).

  47. K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009).

  48. J.P. Velev, S.S. Jaswal, E.Y. Tsymbal, Philos. Trans. R. Soc. London, Ser. A 369, 3069 (2011).

  49. M.Y. Zhuravlev, S.S. Jaswal, E.Y. Tsymbal, R.F. Sabirianov, Appl. Phys. Lett. 87, 222114 (2005).

  50. M.Y. Zhuravlev, S. Maekawa, E.Y. Tsymbal, Phys. Rev. B 81, 104419 (2010).

  51. J.P. Velev, C.-G. Duan, J.D. Burton, A. Smogunov, M.K. Niranjan, E. Tosatti, S.S. Jaswal, E.Y. Tsymbal, Nano Lett. 9, 427 (2009).

  52. M.K. Niranjan, J.D. Burton, J.P. Velev, S.S. Jaswal, E.Y. Tsymbal, Appl. Phys. Lett. 95, 052501 (2009).

  53. V. Garcia, M. Bibes, L. Bocher, S. Valencia, F. Kronast, S. Enouz-Vedrenne, A. Gloter, D. Imhoff, C. Deranlot, N.D. Mathur, S. Fusil, K. Bouzehouane, A. Barthélémy, Science 327, 1106 (2010).

  54. M. Gajek, M. Bibes, S. Fusil, K. Bouzehouane, J. Fontcuberta, A. Barthélémy, A. Fert, Nat. Mater. 6, 296 (2007).

  55. C.-G. Duan, S.S. Jaswal, E.Y. Tsymbal, Phys. Rev. Lett. 97, 047201 (2006).

  56. S. Valencia, A. Crassous, L. Bocher, V. Garcia, X. Moya, R.O. Cherifi, C. Deranlot, K. Bouzehouane, S. Fusil, A. Zobelli, A. Gloter, N.D. Mathur, A. Gaupp, R. Abrudan, F. Radu, A. Barthélémy, M. Bibes, Nat. Mater. 10, 753 (2011).

  57. Y.W. Yin, M. Raju, W.J. Hu, X.J. Weng, X.G. Li, Q. Li, J. Appl. Phys. 109, 07D915 (2011).

  58. M. Hambe, A. Petraru, N.A. Pertsev, P. Munroe, V. Nagarajan, H. Kohlstedt, Adv. Funct. Mater. 20, 2436 (2010).

  59. J.A. Hutchby, R. Cavin, V. Zhirnov, J.E. Brewer, G. Bourianoff, Computer 41, 28 (2008).

  60. P. Zubko, J.-M. Triscone, Nature 460, 45 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Y. Tsymbal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsymbal, E.Y., Gruverman, A., Garcia, V. et al. Ferroelectric and multiferroic tunnel junctions. MRS Bulletin 37, 138–143 (2012). https://doi.org/10.1557/mrs.2011.358

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.358

Navigation