Skip to main content
Log in

MgB2, a two-gap superconductor for practical applications

  • Superconductivity at 100—Where we’ve been and Where we’re Going
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

The history of superconductivity in MgB2 has been short, but intense. Ten years after its discovery, the two-gap mechanism of superconductivity in MgB2 has been mastered to a considerable extent while developing its superconducting properties in wires that meet the technical and economic requirements of industrial applications. The hope for dry superconductivity (i.e., without any liquid cryogen) using this simple and low-cost material has been recently fulfilled, with current commercial availability of MgB2-based dry MRI machines. We expect that scientific progress in understanding and developing MgB2 conductors will continue, strengthening the base for further deployment of MgB2 in applications. This article presents the main scientific and technical highlights of MgB2, describing its two-gap superconductivity, progress in improving its superconducting properties, the advances toward making MgB2 a fully recognized practical superconductor, and its prospects for ongoing and upcoming applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. J. Nakamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Nature 410, 63 (2001).

    Google Scholar 

  2. D.C. Larbalestier, L.D. Cooley, M.O. Rikel, A.A. Polyanskii, J. Jiang, S. Patnaik, X.Y. Cai, D.M. Feldmann, A. Gurevich, A.A. Squitieri, M.T. Naus, C.B. Eom, E.E. Hellstrom, R.J. Cava, K.A. Regan, N. Rogado, M.A. Hayward, T. He, J.S. Slusky, P. Khalifah, K. Inumaru, M. Haas, Nature 410, 186 (2001).

    Google Scholar 

  3. G. Grasso, A. Malagoli, C. Ferdeghini, S. Roncallo, V. Braccini, A.S. Siri, M.R. Cimberle, Appl. Phys. Lett. 79, 230 (2001).

    Google Scholar 

  4. M. Eisterer, Supercond. Sci. Technol. 22, 095011 (2009).

    Google Scholar 

  5. V. Braccini, V. Braccini, A. Gurevich, J.E. Giencke, M.C. Jewell, C.B. Eom, D.C. Larbalestier, A. Pogrebnyakov, Y. Cui, B.T. Liu, Y.F. Hu, J.M. Redwing, Q. Li, X.X. Xi, R.K. Singh, R. Gandikota, J. Kim, B. Wilkens, N. Newman, J. Rowell, B. Moeckly, V. Ferrando, C. Tarantini, D. Marré, M. Putti, C. Ferdeghini, R. Vaglio, E. Haanappel, Phys. Rev. B 71, 012504 (2005).

    Google Scholar 

  6. X.X. Xi, Rep. Prog. Phys. 71, 116501 (2008).

    Google Scholar 

  7. V. Moshchalkov, M. Menghini, T. Nishio, Q.H. Chen, A.V. Silhanek, V.H. Dao, L.F. Chibotaru, N.D. Zhigadlo, J. Karpinski, Phys. Rev. Lett. 102, 117001 (2009).

    Google Scholar 

  8. M. Putti, V. Braccini, C. Ferdeghini, I. Pallecchi, A.S. Siri, F. Gatti, P. Manfrinetti, A. Palenzona, Phys. Rev. B 70, 052509 (2004).

    Google Scholar 

  9. J. Kortus, O.V. Dolgov, R.K. Kremer, A.A. Golubov, Phys. Rev. Lett. 94, 027002 (2005).

    Google Scholar 

  10. M. Putti, R. Vaglio, J.M. Rowell, Supercond. Sci. Technol. 21, 043001 (2008).

    Google Scholar 

  11. M. Putti, P. Brotto, M. Monni, E. Galleani d’Agliano, A. Sanna, S. Massidda, Europhys. Lett. 77, 57005 (2007).

    Google Scholar 

  12. E.W. Collings, M.D. Sumption, M. Bhatia, M.A. Susner, S.D. Bohnenstiehl, Supercond. Sci. Technol. 21, 103001 (2008).

    Google Scholar 

  13. A. Gurevich, Physica C 456, 160 (2007).

    Google Scholar 

  14. P. Brotto I. Pallecchi, M. Putti, E. Galleani D’Agliano, Phys. Rev. B 82, 134512 (2010).

    Google Scholar 

  15. Y. Zhu, Y. Zhu, A.V. Pogrebnyakov, R.H. Wilke, K. Chen, X.X. Xi, J.M. Redwing, C.G. Zhuang, Q.R. Feng, Z.Z. Gan, R.K. Singh, Y. Shen, N. Newman, J.M. Rowell, F. Hunte, J. Jaroszynski, D.C. Larbalestier, S.A. Baily, F.F. Balakirev, P.M. Voyles, Supercond. Sci. Technol. 23, 095008 (2010).

    Google Scholar 

  16. R.H.T. Wilke, S.L. Bud’ko, P.C. Canfield, D.K. Finnemore, R.J. Suplinskas, S.T. Hannahs, Phys. Rev. Lett. 92, 217003 (2004).

    Google Scholar 

  17. A. Matsumoto, H. Kumakura, H. Kitaguchi, B.J. Senkowicz, M.C. Jewell, E.E. Hellstrom, Y. Zhu, P.M. Voyles, D.C. Larbalestier, Appl. Phys. Lett. 89, 132508 (2006).

    Google Scholar 

  18. M.D. Sumption, M. Bhatia, M. Rindfleisch, M. Tomsic, S. Soltanian, S.X. Dou, E.W. Collings, Appl. Phys. Lett. 86, 092507 (2005).

    Google Scholar 

  19. A. Serquis, G. Serrano, S.M. Moreno, L. Civale, B. Maiorov, F. Balakirev, M. Jaime, Supercond. Sci. Technol. 20, L12 (2007).

  20. Z. Gao, Y. Ma, X. Zhang, D. Wang, Z. Yu, K. Watanabe, H. Yang, H. Wen, Supercond. Sci. Technol. 20, 485 (2007).

    Google Scholar 

  21. B.J. Senkowicz, J.E. Giencke, S. Patnaik, C.B. Eom, E.E. Hellstrom, D.C. Larbalestier, Appl. Phys. Lett. 86, 202502 (2005).

    Google Scholar 

  22. Y. Ma, X. Zhang, S. Awaji, D. Wang, Z. Gao, G. Nishijima, K. Watanabe, Supercond. Sci. Technol. 20, L5 (2007).

  23. J.H. Kim, S. Zhou, M.S.A. Hossain, A.V. Pan, S.X. Dou, Appl. Phys. Lett. 89, 142505 (2006).

    Google Scholar 

  24. V. Braccini, D. Nardelli, R. Penco, G. Grasso, Physica C 456, 209 (2007).

    Google Scholar 

  25. R. Flukiger, P. Lezza, M. Cesaretti, C. Senatore, R. Gladyshevskii, IEEE Trans. Appl. Supercond. 17, 2846 (2007).

    Google Scholar 

  26. A. Matsumoto, Y. Kobayashi, K.-I. Takahashi, H. Kumakura, H. Kitaguchi, Appl. Phys. Express 1, 021702 (2008).

    Google Scholar 

  27. C. Tarantini, H.U. Aebersold, C. Bernini, V. Braccini, C. Ferdeghini, U. Gambardella, E. Lehmann, P. Manfrinetti, A. Palenzona, I. Pallecchi, M. Vignolo, M. Putti, Physica C 463465, 211 (2007).

  28. B.J. Senkowicz, R.J. Mungall, Y. Zhu, J. Jiang, P.M. Voyles, E.E. Hellstrom, D.C. Larbalestier, Supercond. Sci. Technol. 21, 035009 (2008).

    Google Scholar 

  29. G. Romano, M. Vignolo, V. Braccini, V. Malagoli, A.C. Bernini, M. Tropeano, C. Fanciulli, M. Putti, C. Ferdeghini, IEEE Trans. Appl. Supercond. 19, 2706 (2009).

    Google Scholar 

  30. J.M. Rowell, Supercond. Sci. Technol. 16, R17 (2003).

  31. A. Yamamoto, J.-I. Shimoyama, K. Kishio, T. Matsushita, Supercond. Sci. Technol. 20, 658 (2007).

    Google Scholar 

  32. J. Jiang, B.J. Senkowicz, D.C. Larbalestier, E.E. Hellstrom, Supercond. Sci. Technol. 19, L33 (2006).

  33. M. Vignolo, G. Romano, A. Malagoli, V. Braccini, M. Tropeano, E. Bellingeri, C. Fanciulli, C. Bernini, V. Honkimaki, M. Putti, C. Ferdeghini, IEEE Trans. Appl. Supercond. 19, 2718 (2009).

    Google Scholar 

  34. S. Jin, H. Mavoori, C. Bower, R.B. van Dover, Nature 411, 563 (2001).

    Google Scholar 

  35. M. Tomsic, M. Rindfleisch, J. Yue, K. McFadden, D. Doll, J. Phillips, M.D. Sumption, M. Bhatia, S. Bohnenstiehl, E.W. Collings, Physica C 456, 203 (2007).

    Google Scholar 

  36. M. Razeti, S. Angius, L. Bertora, D. Damiani, R. Marabotto, M. Modica, D. Nardelli, M. Perrella, M. Tassisto, IEEE Trans. Appl. Supercond. 18, 882 (2008).

    Google Scholar 

  37. W. Yao, J. Bascun, W.-S. Kim, S. Hahn, H. Lee, Y. Iwasa, IEEE Trans. Appl. Supercond. 18, 91 (2008).

    Google Scholar 

  38. N. Magnusson, M. Runde, J. Phys. Conf. Ser. 43,1019 (2006).

  39. A. Stenvall, N. Magnusson, Z. Jelinek, G. Grasso, I. Hiltunen, A. Korpela, J. Lehtonen, R. Mikkonen, M. Runde, Physica C 468, 487 (2008).

    Google Scholar 

  40. H. Suhl, B.T. Matthias, L.R. Walker, Phys. Rev. Lett. 3, 552 (1959).

    Google Scholar 

  41. O.V. Dolgov, R.K. Kremer, J. Kortus, A.A. Golubov, S.V. Shulga, Phys. Rev. B 72, 024504 (2005).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Putti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Putti, M., Grasso, G. MgB2, a two-gap superconductor for practical applications. MRS Bulletin 36, 608–613 (2011). https://doi.org/10.1557/mrs.2011.176

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.176

Navigation