Skip to main content
Log in

Epitaxial graphene: A new electronic material for the 21st century

  • Technical Feature
  • Published:
MRS Bulletin Aims and scope Submit manuscript

Abstract

Graphene has been known for a long time, but only recently has its potential for electronics been recognized. Its history is recalled starting from early graphene studies. A critical insight in June 2001 brought to light that graphene could be used for electronics. This was followed by a series of proposals and measurements cumulating in a comprehensive patent for graphene-based electronics filed in 2003. The Georgia Institute of Technology (GIT) graphene electronics research project group selected epitaxial graphene as the most viable route for graphene-based electronics, as described in their 2004 paper on transport and structural measurements of epitaxial graphene. Subsequently, the field developed rapidly, and multilayer graphene was discovered at GIT. This material consists of many graphene layers, but it is not graphite; in contrast to graphite, the layers are rotated with respect to each other, causing electronic decoupling so that each layer has the electronic structure of graphene. Currently, the field has developed to the point where epitaxial graphene-based electronics may be realized in the not too distant future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. E. Acheson, J. Franklin Inst. 164, 0375 (1907); Chemical & metallurgical engineering 5, 452 (1907), edited by Eugene Franz Roeber, Howard Coon Parmelee.

    Google Scholar 

  2. H.C. Dunwoody, “Wireless telegraph system,” U.S. Patent 837, 616 (1906).

  3. H.J. Round, Electrical World 19, 309 (1907).

    Google Scholar 

  4. J.A. Lely, Berichte der Deutschen Keramischen Gesellschaft 32, 229 (1955).

    Google Scholar 

  5. B.C. Brodie, Proceedings of the Royal Society of London 10, 249 (1859).

    Google Scholar 

  6. H. Boehm, A. Clauss, U. Hofmann, G. Fischer, Z. Naturforsch., B: Chem. Sci. 17, 150 (1962).

    Google Scholar 

  7. H. Boehm, R. Setton, E. Stumpp, Carbon 24, 241 (1986).

    Google Scholar 

  8. A.J. van Bommel, J.E. Crombeen, A. van Tooren, Surf. Sci. 48, 463 (1975).

    Google Scholar 

  9. I. Forbeaux, J.M. Themlin, J.M. Debever, Phys. Rev. B: Condens. Matter 58, 16396 (1998).

    Google Scholar 

  10. N.R. Gall, E.V. RutKov, A.Y. Tontegode, Int. J. Mod. Phys. B 11, 1865 (1997).

    Google Scholar 

  11. X. Lu, M. Yu, H. Huang, R. Ruoff, Nanotechnology 10, 269 (1999).

    Google Scholar 

  12. P.R. Wallace, Phys. Rev. 71, 622 (1947).

    Google Scholar 

  13. J.W. McClure, Phys. Rev. 119, 606 (1960).

    Google Scholar 

  14. T. Ando, T. Nakanishi, R. Saito, J. Phys. Soc. Jpn. 67, 2857 (1998).

    Google Scholar 

  15. S. Iijima, Nature 354, 56 (1991).

    Google Scholar 

  16. J. Mintmire, B. Dunlap, C. White, Phys. Rev. Lett. 68, 631 (1992).

    Google Scholar 

  17. S. Frank, P. Poncharal, Z.L. Wang, W.A. Heer, Science 280, 1744 (1998).

    Google Scholar 

  18. C. White, T. Todorov, Nature 393, 240 (1998).

    Google Scholar 

  19. S. Tans, R. Verschueren, C. Dekker, Nature 393, 49 (1998).

    Google Scholar 

  20. K. Nakada, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B: Condens. Matter 54, 17954 (1996).

    Google Scholar 

  21. W. de Heer, Early Development of Graphene Electronics (2009); http://hdl.handle.net/1853/31270/1853/31270.

  22. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, F. Grigorieva, IV, Science 306, 666 (2004).

    Google Scholar 

  23. C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Journal of Physical Chemistry B 108, 19912 (2004).

    Google Scholar 

  24. C. Berger, Z. Song, T. Li, P. First, J. Bellisard, W.A. deHeer, Bull. Amer. Phys. Soc. (2004); http://flux.aps.org/meetings/YR04/MAR04/baps/abs/S170008.html.

  25. W. de Heer, C. Berger, X. Wu, P. First, E. Conrad, X. Li, T. Li, M. Sprinkle, J. Hass, M. Sadowski, M. Potemski, G. Martinez, Solid State Comm. 143, 92 (2007).

    Google Scholar 

  26. X. Wu, Y. Hu, M. Ruan, N. Madiomanana, J. Hankinson, M. Sprinkle, C. Berger, W.A. de Heer, Appl. Phys. Lett. 95, 223108 (2009).

    Google Scholar 

  27. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, W.A. de Heer, Science 312, 1191 (2006).

    Google Scholar 

  28. M.L. Sadowski, G. Martinez, M. Potemski, C. Berger, W.A. de Heer, Phys. Rev. Lett. 97, 266405 (2006).

    Google Scholar 

  29. M. Orlita, C. Faugeras, P. Plochocka, P. Neugebauer, G. Martinez, D.K. Maude, A. Barra, M. Sprinkle, C. Berger, W.A. de Heer, M. Potemski, Phys. Rev. Lett. 101, 267601 (2008).

    Google Scholar 

  30. J. Hass, F. Varchon, J.E. Millan-Otoya, M. Sprinkle, N. Sharma, W.A. de Heer, C. Berger, P.N. First, L. Magaud, E.H. Conrad, Phys. Rev. Lett. 100, 125504 (2008).

    Google Scholar 

  31. M. Sprinkle, D. Siegel, Y. Hu, J. Hicks, P. Soukiassian, A. Tejeda, A. Taleb-Ibrahimi, P.L. Fävre, F. Bertran, C. Berger, W.A. de Heer, A. Lanzara, E.H. Conrad, Phys. Rev. Lett. 103, 4 (2009).

    Google Scholar 

  32. D.L. Miller, K.D. Kubista, G.M. Rutter, M. Ruan, W.A. de Heer, P.N. First, J.A. Stroscio, Science 324, 924 (2009).

    Google Scholar 

  33. D. Sun, Z. Wu, C. Divin, X. Li, C. Berger, W.A. de Heer, P.N. First, T.B. Norris, Phys. Rev. Lett. 101, 157402 (2008).

    Google Scholar 

  34. X. Wu, M. Sprinkle, X. Li, F. Ming, C. Berger, W.A. de Heer, Phys. Rev. Lett. 101, 026801 (2008).

    Google Scholar 

  35. E. Bekyarova, M.E. Itkis, P. Ramesh, C. Berger, M. Sprinkle, W.A. de Heer, R.C. Haddon, J. Am. Chem. Soc. 131, 1336 (2009).

    Google Scholar 

  36. M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. de Heer, Nat. Nanotechnol. 5, 727 (2010).

    Google Scholar 

  37. K.V. Emtsev, A. Bostwick, K. Horn, J. Jobst, G.L. Kellogg, L. Ley, J.L. McChesney, T. Ohta, S.A. Reshanov, J. Röhrl, E. Rotenberg, A.K. Schmid, D. Waldmann, H.B. Weber, Th. Seyller, Nat. Mater. 8, 203 (2009).

    Google Scholar 

  38. Y.M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.Y. Chiu, A. Grill, P. Avouris, Science 327, 662 (2010).

    Google Scholar 

  39. J. Kedzierski, P.L. Hsu, P. Healey, P.W. Wyatt, C.L. Keast, M. Sprinkle C. Berger, W.A. de Heer, IEEE Trans. Electron Devices 55, 2078 (2008).

    Google Scholar 

  40. A. Tzalenchuk, S. Lara-Avila, A. Kalaboukhov, S. Paolillo, M. Syvajarvi, R. Yakimova, O. Kazakova, T.J.B.M. Janssen, V. Fal’ko, S. Kubatkin, Nano Lett. 10, 1559 (2010).

    Google Scholar 

Download references

Acknowledgments

The Georgia Institute of Technology graphene electronics research project was first funded by Intel Corp. in 2003, later by the National Science Foundation in 2004, the Keck foundation in 2008, and the Air Force Office of Scientific Research in 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walt A. de Heer.

Additional information

Walt A. de Heer (Georgia Institute of Technology) gave the MRS Medal presentation on December 2, 2010, at the Materials Research Society Fall Meeting in Boston. De Heer was awarded the Medal “for his pioneering contributions to the science and technology of epitaxial graphene.” This article, authored by de Heer, provides a written adaptation of that address.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Heer, W.A. Epitaxial graphene: A new electronic material for the 21st century. MRS Bulletin 36, 632–639 (2011). https://doi.org/10.1557/mrs.2011.158

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrs.2011.158

Navigation