Skip to main content

Advertisement

Log in

Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Materials diagnostic techniques are the principal tools used in the development of low-cost, high-performance electrodes for next-generation lithium-based energy storage technologies. This review highlights the importance of materials diagnostic techniques in unraveling the structure and the structural degradation mechanisms in high-voltage, high-capacity oxides that have the potential to be implemented in high-energy-density lithium-ion batteries for transportation that can use renewable energy and is less-polluting than today.

The rise in CO2 concentration in the earth’s atmosphere due to the use of petroleum products in vehicles and the dramatic increase in the cost of gasoline demand the replacement of current internal combustion engines in our vehicles with environmentally friendly, carbon free systems. Therefore, vehicles powered fully/partially by electricity are being introduced into today’s transportation fleet. As power requirements in all-electric vehicles become more demanding, lithium-ion battery (LiB) technology is now the potential candidate to provide higher energy density. Discovery of layered high-voltage lithium-manganese–rich (HV-LMR) oxides has provided a new direction toward developing high-energy-density LiBs because of their ability to deliver high capacity ( ∼ 250 mA h/g) and to be operated at high operating voltage (∼ 4.7 V). Unfortunately, practical use of HV-LMR electrodes is not viable because of structural changes in the host oxide during operation that can lead to fundamental and practical issues. This article provides the current understanding on the structure and structural degradation pathways in HV-LMR oxides, and manifests the importance of different materials diagnostic tools to unraveling the key mechanism(s). The fundamental insights reported, might become the tools to manipulate the chemical and/or structural aspects of HV-LMR oxides for low cost, high-energy-density LiB applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Similar content being viewed by others

References

  1. Lawrence Livermore National Library: Energy Flow Charts (2014). Available at: https://flowcharts.llnl.gov/ (accessed October 2015).

    Google Scholar 

  2. US Energy Information Administration: (2015). Available at: http://www.eia.gov/ (accessed October 2015).

  3. Young T.: A Course of Lectures on Natural Philosophy and the Mechanical Arts (Taylor and Walton, London, 1807).

    Google Scholar 

  4. Lewis N.S.: Powering the Planet. Eng. Sci. 2, 13 (2007).

    Google Scholar 

  5. Lewis N.S.: Powering the Planet. MRS Bull. 32, 808 (2007).

    Google Scholar 

  6. Baskin N.: Better Place Unrealized Dream (2013). Available at: https://www.weizmann.ac.il/AERI/sites/AERI/files/electric_car.pptx (accessed October 2015).

    Google Scholar 

  7. Chu S. and Majumdar A.: Opportunities and challenges for a sustainable energy future. Nature 488, 294 (2012).

    CAS  Google Scholar 

  8. Zhang S.S.: Status, opportunities, and challenges of electrochemical energy storage. Front. Energy Res. 1, 1 (2013).

    Google Scholar 

  9. Danielson D.T.: Everywhere Grand Challenge Blue Print (US Department of Energy, 2013). Available at: http://www1.eere.energy.gov/vehiclesandfuels/electric_vehicles/pdfs/eveverywhere_blueprint.pdf (accessed October 2015).

    Google Scholar 

  10. Whittingham M.S.: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    CAS  Google Scholar 

  11. Howell D.: EV Everywhere Grand Challenge-Battery Obstacles and Opportunities (US Department of Energy, Washington DC, 2012).

    Google Scholar 

  12. http://www.uscar.org/guest/article_view.php?articles_id=85 (accessed November 2015).

  13. Mohanty D., Li J., Born R., Maxey L.C., Dinwiddie R.B., Daniel C. III, and Wood D.L.: Non-destructive evaluation of slot-die-coated lithium secondary battery electrodes by in-line laser caliper and IR thermography methods. Anal. Methods 6, 674 (2014).

    CAS  Google Scholar 

  14. Wood D.L. III, Li J., and Daniel C.: Prospects for reducing the processing cost of lithium ion batteries. J. Power Sources 275, 234 (2015).

    CAS  Google Scholar 

  15. Li J., Daniel C., and Wood D.: Materials processing for lithium-ion batteries. J. Power Sources 196(5), 2452 (2011).

    CAS  Google Scholar 

  16. Tarascon J-M. and Armand M.: Building better batteries. Nature 451, 652 (2008).

    Google Scholar 

  17. Oak Ridge National Laboratory: Battery Fatigue (2013). Available at: https://www.youtube.com/watch?v=e7ZpvyJhMHM&feature=youtu.be (accessed October 2015).

    Google Scholar 

  18. Daniel C., Mohanty D., Li J. III, and Wood D.L.: Cathode materials review. In AIP Conference Proceedings. 1597, Vol. 26, Freiberg, Germany, 2014; p. 26.

    Google Scholar 

  19. Kraytsberg A. and Eli Y.E.: Higher, stronger, better... A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv. Energy Mater. 2, 922 (2012).

    CAS  Google Scholar 

  20. Whittingham M.S.: Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976).

    CAS  Google Scholar 

  21. Manthiram A. and Muraliganth T.: Lithium intercalation cathode materials for lithium-ion batteries. In Handbook of Battery Materials, 2nd ed., Daniel C. and Besenhard J.O. eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.

    Google Scholar 

  22. Mizushima K., Jones P.C., Wiesman P.J., and Goodenough J.B.: LixCoO2 (0<x<−1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).

    CAS  Google Scholar 

  23. Goodenough J.B., Mizushima K., and Takeda T.: J. Appl. Phys. 19, 305 (1983).

    Google Scholar 

  24. National Academy of Engineering: Draper Prize Winners: Dr. Rachid Yazami (2014). Available at: http://www.nae.edu/Projects/Awards/DraperPrize/DraperWinners/105792/105813.aspx (accessed October 2015).

    Google Scholar 

  25. Julien C.M., Mauger A., Zaghi K., and Groult H.: Comparative issues of cathode materials for Li-ion batteries. Inorganics 2, 132 (2014).

    CAS  Google Scholar 

  26. Mohanty D., Huq A., Andrew Payzant E., Sefat A.S., Li J., Abraham D.P., Wood D.L. III, and Daniel C.: Neutron diffraction and magnetic susceptibility studies on a high-voltage Li1.2Mn0.55Ni0.15Co0.10O2 lithium ion battery cathode: Insight into the crystal structure. Chem. Mater. 25, 4064–4070 (2013).

    CAS  Google Scholar 

  27. Manthiram A.: Materials challenges and opportunities of lithium ion batteries. J. Phys. Chem. Lett. 2, 176 (2011).

    CAS  Google Scholar 

  28. Huang B., Jang Y-I., Chiang Y-M., and Sadoway D.R.: Electrochemical evaluation of LiCoO2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications. J. Appl. Electrochem. 28, 1365 (1998).

    CAS  Google Scholar 

  29. Wang L-F., Ou C-C., Striebel K.A., and Chenc J-S.: Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 Cells. J. Electrochem. Soc. 150, A905 (2003).

    CAS  Google Scholar 

  30. Padhi A.K., Nanjundaswamy K.S., and Goodenough J.B.: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    CAS  Google Scholar 

  31. Yu H., Shikawa R., So Y-G., Shibata N., Kudo T., Zhou H., and Ikuhara Y.: Direct atomic-resolution observation of two phases in the Li1.2Mn0.567Ni0.166Co0.067O2 cathode material for lithium-ion batteries. Angew. Chem., Int. Ed. 52, 5969.

  32. Lu Z.H., MacNeil D.D., and Dahn J.R.: Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)] O2 for lithium-ion batteries. Electrochem. Solid-State Lett. 4, A191 (2001).

    CAS  Google Scholar 

  33. Thackeray M.M., Johnson C.S., Vaughey J.T., Li N., and Hackney S.A.: Advances in manganese-oxide ‘composite’ electrodes for lithium-ion batteries. J. Mater. Chem. 15, 2257 (2005).

    CAS  Google Scholar 

  34. Sathiya M., Rousse G., Ramesha K., Laisa C.P., Vezin H., Sougrati M.T., Doublet M-L., Foix D., Gonbeau D., Walker W., Prakash A.S., Ben Hassine M., Dupont L., and Tarascon J-M.: Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827 (2013).

    CAS  Google Scholar 

  35. Xu B., Qian D., Wang Z., and Meng Y.S.: Recent progress in cathode materials research for advanced lithium ion batteries. Mater. Sci. Eng., R 73, 51 (2012).

    CAS  Google Scholar 

  36. Ohzuku T., Ueda A., and Nagayama M.: Electrochemistry and structural chemistry of LiNiO2R3m for 4 volt secondary lithium cells. J. Electrochem. Soc. 140, 1862 (1993).

    CAS  Google Scholar 

  37. Besenhard O.J.: Handbook of Battery Materials (Wiley-VCH, New York, 1999).

    Google Scholar 

  38. Hirano A., Kanno R., Kawamoto Y., Yamaura T.Y.K., Takano M., Ohyama K., Ohashi M., and Yamaguchi Y.: Relationship between non-stoichiometry and physical properties in LiNiO2. Solid State Ionics 78, 123 (1995).

    CAS  Google Scholar 

  39. Ohzuku T. and Msakimura Y.: Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries. Chem. Lett. 30, 744 (2001).

    Google Scholar 

  40. Yabuuchi N., Kumar S., Li H.H., Kim Y.T., and Shao-Horn Y.: Changes in the crystal structure and electrochemical properties of LixNi0.5Mn0.5O2 during electrochemical cycling to high voltages. J. Electrochem. Soc. 154, A566 (2007).

    CAS  Google Scholar 

  41. Ohzuku T. and Makimura Y.: Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem. Lett. 30, 642 (2001).

    Google Scholar 

  42. Kang K., Shirley Meng Y., Bréger J., Grey C.P., and Ceder G.: Electrodes with high power and high capacity for rechargeable lithium batteries. Science 311, 977 (2006).

    CAS  Google Scholar 

  43. Nazri G.A. and Pistoia G. eds.: Lithium Batteries Science and Technology (Springer, New York, USA, 2009).

    Google Scholar 

  44. Johnson C.S., Li N., Lefief C., Vaughey J.T., and Thackeray M.M.: Synthesis, characterization and electrochemistry of lithium battery electrodes: xLi2MnO3·(1 − x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7). Chem. Mater. 20, 6095 (2008).

    CAS  Google Scholar 

  45. McCalla E., Lowartz C.M., Brown C.R., and Dahn J.R.: Formation of layered–layered composites in the Li–Co–Mn oxide pseudoternary system during slow cooling. Chem. Mater. 25, 912 (2013).

    CAS  Google Scholar 

  46. Jiang M., Key B., Meng Y.S., and Grey C.P.: Electrochemical and structural study of the layered, “Li-excess” lithium-ion battery electrode material Li[Li1/9Ni1/3Mn5/9]O2. Chem. Mater. 21, 2733 (2009).

    CAS  Google Scholar 

  47. Meng Y.S., Ceder G., Grey C.P., Yoon W-S., Jiang M., Bréger J., and Shao-Horn Y.: Cation ordering in layered O3 Li[NixLi1/3−2x/3Mn2/3−x/3]O2 (0 ≤ x ≤ 1/2) compounds. Chem. Mater. 17, 2386 (2005).

    CAS  Google Scholar 

  48. Lu W., Wu Q., and Dees D.: Electrochemical characterization of lithium and manganese rich composite material for lithium ion batteries. J. Electrochem. Soc. 160, A950 (2013).

    CAS  Google Scholar 

  49. Gallagher K.G., Croy J.R., Balasubramanian M., Bettge M., Abraham D.P., Burrell A.K., and Thackeray M.M.: Correlating hysteresis and voltage fade in lithium- and manganese-rich layered transition-metal oxide electrodes. Electrochem. Commun. 33, 96 (2013).

    CAS  Google Scholar 

  50. Bettge M., Li Y., Gallagher K., Zhu Y., Wua Q., Lu W., Bloom I., and Abraham D.P.: Voltage fade of layered oxides: Its measurement and impact on energy density. J. Electrochem. Soc. 160, A2046 (2014).

    Google Scholar 

  51. Deng Z.D. and Manthiram A.: Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes. J. Phys. Chem. 115, 7097 (2011).

    CAS  Google Scholar 

  52. Mohanty D., Sefat A.S., Kalnaus S., Li J., Meisner R.A., Abraham D.P., Payzant E.A., Wood D.L. III, and Daniel C.: Investigating phase transformation in the Li1.2Co0.1Mn0.55Ni0.15O2 lithium-ion battery cathode during high-voltage hold (4.5 V) via magnetic, X-ray diffraction and electron microscopy studies. J. Mater. Chem. A 1, 6249 (2013).

    CAS  Google Scholar 

  53. Armstrong A.R., Holzapfel M., Novak P., Johnson C.S., Kang S.H., Thackeray M.M., and Bruce P.G.: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. J. Am. Chem. Soc. 128, 8694 (2006).

    CAS  Google Scholar 

  54. Yu H. and Zhou H.: High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268 (2013).

    CAS  Google Scholar 

  55. Li L., Seng Lee K., and Lu L.: Li-rich layer-structured cathode materials for high energy Li-ion batteries. Funct. Mater. Lett. 7, 1430002 (2014).

    Google Scholar 

  56. Croy J.R., Abouimrane A., and Zhang Z.: Next-generation lithium-ion batteries: The promise of near-term advancements. Mater. Res. Bull. 39, 407 (2014).

    CAS  Google Scholar 

  57. He P., Yu H., Li D., and Zhou H.: Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries. J. Mater. Chem. A 22, 3680 (2012).

    CAS  Google Scholar 

  58. Hu M., Pang X., and Zhou Z.: Recent progress in high-voltage lithium ion batteries. J. Power Sources 237, 229 (2013).

    CAS  Google Scholar 

  59. Zolotoyabko E.: Basic Concepts of X-Ray Diffraction (Wiley-VCH, Germany, 2014). ISBN: 978-3-527-33561-9.

    Google Scholar 

  60. Shioya T.: R&D Report, “SUMITOMO KAGAKU”, Vol. 2011, 1 (2011).

  61. Whitfield P.S., Davidson I.J., Stephens P.W., Cranswick L.M.D., and Swainson I.P.: Untangling cation ordering in complex lithium battery cathode materials—Simultaneous refinement of x-ray, neutron and resonant scattering data. Z. Kristallogr. Suppl. 26, 483 (2007).

    Google Scholar 

  62. Bennigton S.M.: The use of neutron scattering in the study of ceramics. J. Mater. Sci. 39, 6757 (2004).

    Google Scholar 

  63. Williams D.V. and Carter C.B.: Transmission Electron Microscopy (Springer, New York, 1996).

    Google Scholar 

  64. Gracia B., Farcy J., and Pereira-Ramos J.P.: Electrochemical properties of low temperature crystallized LiCoO2. J. Electrochem. Soc. 144, 1179 (1997).

    Google Scholar 

  65. Gummow R.J., Thackeray M.M., David W.I.F., and Hull S.: Structure and electrochemistry of lithium cobalt oxide synthesised at 400°C. Mater. Res. Bull. 27, 327 (1992).

    CAS  Google Scholar 

  66. Rossen E., Reimers J.N., and Dahn J.R.: Synthesis and electrochemistry of spinel LT-LiCoO2. Solid State Ionics 62, 53 (1993).

    CAS  Google Scholar 

  67. Koga H., Croguennec L., Mannessiez P., Menetrier M., Weill F., Bourgeois L., Duttine M., Suard E., and Delmas C.: Li1.20Mn0.54Co0.13Ni0.13O2 with different particle sizes as attractive positive electrode materials for lithium-ion batteries: Insights into their structure. J. Phys. Chem. 116, 13497 (2012).

    CAS  Google Scholar 

  68. Jarvis K.A., Deng Z., Allard L.F., Manthiram A., and Ferreira P.J.: Atomic structure of a lithium-rich layered oxide material for lithium-ion batteries: Evidence of a solid solution. Chem. Mater. 23, 3614 (2011).

    CAS  Google Scholar 

  69. Amalraj F., Kovacheva D., Talianker M., Zeiri L., Grinblat J., Leifer N., Goobes G., Markovsky B., and Aurbach D.: Synthesis of integrated cathode materials xLi2MnO3 (1 − x)LiMn1/3Ni1/3Co1/3O2 (x=0.3, 0.5, 0.7) and studies of their electrochemical behavior. J. Electrochem. Soc. 157, A1121 (2010).

    CAS  Google Scholar 

  70. Bregera J., Jianga M., Dupre N., Meng Y.S., Horn Y.S., Cederc G., and Grey C.P.: High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3–Li[Ni1/2Mn1/2]O2 solid solution. J. Solid State Chem. 178, 2578 (2005).

    Google Scholar 

  71. Ohzuku T., Nagayama M., Tsuji K., and Ariyoshi K.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: Toward rechargeable capacity more than 300 mA h g−1. J. Mater. Chem. A 21, 10179 (2011).

    CAS  Google Scholar 

  72. Wen J.G., Bareno J., Lei C.H., Kang S.H., Balasubramanian M., Petrov I., and Abraham D.P.: Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries. Solid State Ionics 182, 98 (2011).

    CAS  Google Scholar 

  73. Bareño J., Balasubramanian M., Kang S.H., Wen J.G., Lei C.H., Pol S.V., Petrov I., and Abraham D.P.: Long-range and local structure in the layered oxide Li1.2Co0.4Mn0.4O2. Chem. Mater. 23, 2039 (2011).

    Google Scholar 

  74. Mohanty D., Kalnaus S., Meisner R.A., Rhodes K.J., Li J., Payzant E.A., Wood D.L. III, and Daniel C.: Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction. J. Power Sources 229, 239 (2013).

    CAS  Google Scholar 

  75. Whitfield P.S., Davidson I.J., Cranswick L.M.D., Swainson I.P., and Stephens P.W.: Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction. Solid State Ionics 176, 463 (2005).

    CAS  Google Scholar 

  76. Liu H., Fell C.R., An K., Cai L., and Meng Y.S.: In-situ neutron diffraction study of the xLi2MnO3·(1 − x)LiMO2 (x = 0, 0.5; M = Ni, Mn, Co) layered oxide compounds during electrochemical cycling. J. Power Sources 240, 772 (2013).

    CAS  Google Scholar 

  77. Mohanty D., Sefat A.S., Li J., Meisner R.A., Rondinone A.J., Payzant E.A., Abraham D.P., Wood D.L. III, and Daniel C.: Correlating cation ordering and voltage fade in a lithium–manganese-rich lithium-ion battery cathode oxide: A joint magnetic susceptibility and TEM study. Phys. Chem. Chem. Phys. 15, 19496 (2013).

    CAS  Google Scholar 

  78. Yu S.H., Yoon T., Mun J., Park S., Kang Y.S., Park J.H., Oh S.M., and Sung Y.E.: Continuous activation of Li2MnO3 component upon cycling in Li1.167Ni0.233Co0.100Mn0.467Mo0.033O2 cathode material for lithium ion batteries. J. Mater. Chem. A 1, 2833 (2013).

    CAS  Google Scholar 

  79. Koga H., Croguennec L., Menetrier M., Douhil K., Belin S., Bourgeois L., Suard E., and Weill F.: Reversible oxygen participation to the redox processes revealed for Li1.20Mn0.54Co0.13Ni0.13O2. J. Electrochem. Soc. 160, A786 (2013).

    CAS  Google Scholar 

  80. Li Y., Bettge M., Polzin B., Zhu Y., Balasubramanian M., and Abraham D.P.: Understanding long-term cycling performance of Li1.2Ni0.15Mn0.55Co0.1O2–graphite lithium-ion cells. J. Electrochem. Soc. 160, A3006 (2013).

    CAS  Google Scholar 

  81. Ito A., Shoda K., Sato Y., Hatano M., Horie H., and Ohsawa Y.: Direct observation of the partial formation of a framework structure for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2 upon the first charge and discharge. J. Power Sources 196, 4785 (2011).

    CAS  Google Scholar 

  82. Mohanty D., Li J., Abraham D.P., Huq A., Andrew Payzant E., Wood D.L. III, and Daniel C.: Unraveling the voltage-fade mechanism in high-energy-density lithium-ion batteries: Origin of the tetrahedral cations for spinel conversion. Chem. Mater. 26, 6272 (2014).

    CAS  Google Scholar 

  83. Heimendahl M.V.: Electron Microscopy of Materials (Academic press, New York, 1980).

    Google Scholar 

  84. Amalraj F., Talianker M., Markovsky B., Sharon D., Burlaka L., Shafir G., Zinigrad E., Haik O., Aurbach D., Lampert J., Schulz-Dobrick M., and Garsuchc A.: Study of the lithium-rich integrated compound xLi2MnO3·(1 − x)LiMO2 (x around 0.5; M = Mn, Ni, Co; 2:2:1) and its electrochemical activity as positive electrode in lithium cells. J. Electrochem. Soc. 160, A324 (2013).

    CAS  Google Scholar 

  85. Soo Kim J., Johnson C.S., Vaughey J.T., Thackeray M.M., Hackney S.A., Yoon W., and Grey C.P.: Electrochemical and structural properties of xLi2M‘O3·(1 − x)LiMn0.5Ni0.5O2 electrodes for lithium batteries (M ‘= Ti, Mn, Zr; 0 ≤ x≤ 0.3). Chem. Mater. 16, 1996 (2004).

    Google Scholar 

  86. Gu M., Genc A., Belharouak I., Wang D., Amine K., Thevuthasan S., Baer D.R., Zhang J-G., Browning N.D., Liu J., and Wang C.: Nanoscale phase separation, cation ordering, and surface chemistry in pristine Li1.2Ni0.2Mn0.6O2 for Li-ion batteries. Chem. Mater. 25, 2319 (2013).

    CAS  Google Scholar 

  87. Song B., Liu Z., On Lai M., and Lu L.: Structural evolution and the capacity fade mechanism upon long-term cycling in Li-rich cathode material. Phys. Chem. Chem. Phys. 14, 12875 (2012).

    CAS  Google Scholar 

  88. Gu M., Belharouak I., Zheng J., Wu H., Xiao J., Genc A., Amine K., Thevuthasan S., Baer D.R., Zhang J-G., Browning N.D., Liu J., and Wang C.: Formation of the spinel phase in the layered composite cathode used in Li-ion batteries. ACS Nano 7, 760 (2013).

    CAS  Google Scholar 

  89. Croy J.R., Balasubramanian M., Kim D., Kang S.H., and Thackeray M.M.: Designing high-capacity, lithium-ion cathodes using X-ray absorption spectroscopy. Chem. Mater. 23, 5414 (2011).

    Google Scholar 

  90. Koga H., Croguennec L., Ménétrier M., Mannessiez P., Weill F., Delmas C., and Belin S.: Operando X-ray absorption study of the redox processes involved upon cycling of the Li-rich layered oxide Li1.20Mn0.54Co0.13Ni0.13O2 in Li ion batteries. J. Phys. Chem. C 118, 5700 (2014).

    CAS  Google Scholar 

  91. Croy J.R., Gallagher K.G., Balasubramanian M., Long B.R., and Thackeray M.M.: Quantifying Hysteresis and voltage fade in xLi2MnO3·(1 − x)LiMn0.5Ni0.5O2 electrodes as a function of Li2MnO3 content. J. Electrochem. Soc. 161, A318 (2014).

    CAS  Google Scholar 

  92. Yu X., Lyu Y., Gu L., Wu H., Bak S.M., Zhou Y., Amine K., Ehrlich S.N., Li H., Nam K-W., and Yang X-Q.: Understanding the rate capability of high-energy-density Li-rich layered Li1.2Ni0.15Co0.1Mn0.55O2 cathode materials. Adv. Energy Mater. 4, 1300950 (2014).

    Google Scholar 

  93. Nurullah Ates M., Mukerjee S., and Abraham K.M.: A search for the optimum lithium rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A355 (2014).

    Google Scholar 

  94. Ito A., Sato Y., Sanada T., Hatano M., Horie H., and Ohsawa Y.: In situ X-ray absorption spectroscopic study of Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2. J. Power Sources 196, 6828 (2011).

    CAS  Google Scholar 

  95. Wang Z.L., Yin J.S., and Jiang Y.D.: EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 31, 571 (2000).

    CAS  Google Scholar 

  96. Xu B., Fell C.R., Chi M., and Meng Y.S.: Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study. Energy Environ. Sci. 4, 2223 (2011).

    CAS  Google Scholar 

  97. Grey C.P. and Dupré N.: NMR studies of cathode materials for lithium-ion rechargeable batteries. Chem. Rev. 104, 4493 (2004).

    CAS  Google Scholar 

  98. Chernova N.A., Nolis G.M., Omenya F.O., Zhou H., Lia Z., and Whittingham M.S.: What can we learn about battery materials from their magnetic properties? J. Mater. Chem. 21, 9865 (2011).

    CAS  Google Scholar 

  99. Key B.: Solid State NMR Studies of Li-Rich NMC Cathodes: Investigating Structure Change and Its Effect on Voltage Fade Phenomenon, US DOE Annual Merit Review Meeting, Washington, DC, 2014.

    Google Scholar 

  100. Fell C.R., Chi M., Meng Y.S., and Jones J.L.: In situ X-ray diffraction study of the lithium excess layered oxide compound Li[Li0.2Ni0.2Mn0.6]O2 during electrochemical cycling. Solid State Ionics 207, 44 (2012).

    CAS  Google Scholar 

  101. Lu Z. and Dahn J.R.: Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using In Situ X-ray diffraction and electrochemical studies. J. Electrochem. Soc. 149, A815 (2002).

    CAS  Google Scholar 

  102. Boulineau A., Simonin L., Colin J-F., Bourbon C., and Patoux S.: Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the initial charge/discharge cycle studied by advanced electron microscopy. Nano Lett. 13, 3857 (2013).

    CAS  Google Scholar 

  103. Dixit H., Zhou W., Idrobo J-C., Nanda J., and Cooper V.R.: Facet-dependent disorder in pristine high-voltage lithium–manganese-rich cathode material. ACS Nano 8, 12710 (2014).

    CAS  Google Scholar 

  104. Fell C.R., Qian D., Carroll K.J., Chi M., Jones J.L., and Meng Y.S.: Correlation between oxygen vacancy, microstrain, and cation distribution in lithium-excess layered oxides during the first electrochemical cycle. Chem. Mater. 25, 1621 (2013).

    CAS  Google Scholar 

  105. Carroll K.J., Qian D., Fell C.R., Calvin S., Veith G.M., Chi M., Baggetto L., and Meng Y.S.: Probing the electrode/electrolyte interface in the lithium excess layered oxide Li1.2Ni0.2Mn0.6O2. Phys. Chem. Chem. Phys. 15, 11128 (2013).

    CAS  Google Scholar 

  106. Sathiya M., Abakumov A.M., Foix D., Rousse G., Ramesha K., Saubanère M., Doublet M.L., Vezin H., Laisa C.P., Prakash A.S., Gonbeau D., VanTendeloo G., and Tarascon J-M.: Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230 (2014).

    Google Scholar 

  107. Wang Y., Bie X., Nikolowski K., Ehrenberg H., Du F., Hinterstein M., Wang C., Chen G., and Wei Y.: Relationships between structural changes and electrochemical kinetics of Li-excess Li1.13Ni0.3Mn0.57O2 during the first charge. J. Phys. Chem. C 117, 3279 (2013).

    Google Scholar 

  108. Simonin L., Colin J.F., Ranieri V., Canevet E., Martin J.F., Bourbon C., Baehtz C., Strobel P., Daniel L., and Patoux S.: In situ investigations of a Li-rich Mn–Ni layered oxide for Li-ion batteries. J. Mater. Chem. A 22, 11316 (2012).

    CAS  Google Scholar 

  109. Heng Shen C., Huang L., Lin Z., Shen S-Y., Wang Q., Su H., Fu F., and Zheng X-M.: Kinetics and structural changes of Li-rich layered oxide 0.5Li2MnO3·0.5LiNi0.292Co0.375Mn0.333O2 material investigated by a novel technique combining in situ XRD and a multipotential step. ACS Appl. Mater. Interfaces 6, 13271 (2014).

    Google Scholar 

  110. Shen C.H., Wang Q., Fu F., Huang L., Lin Z., Shen S.Y., Su H., Zheng X.M., Xu B.B., Li J.T., and Sun S.G.: Facile synthesis of the Li-rich layered oxide Li1.23Ni0.09Co0.12Mn0.56O2 with superior lithium storage performance and new insights into structural transformation of the layered oxide material during charge–discharge cycle: In situ XRD characterization. ACS Appl. Mater. Interfaces 6, 5516 (2014).

    CAS  Google Scholar 

  111. Hy S., Felix F., Rick J., Su W.N., and Hwang B.J.: Direct In situ Observation of Li2O Evolution on Li-Rich High-Capacity Cathode Material, Li[NixLi(1–2x)/3Mn(2–x)/3]O2 (0 ≤ x ≤0.5). J. Am. Chem. Soc. 136, 999 (2013).

    Google Scholar 

  112. Ohzuku T., Nagayama M., Tsuji K., and Ariyoshi K.: High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mA h g−1. J. Mater. Chem. 21, 10188 (2011).

    Google Scholar 

  113. Zheng J., Gu M., Xiao J., Zuo P., Wang C., and Zhang J-G.: Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process. Nano Lett. 13, 3824–3830 (2013).

    CAS  Google Scholar 

  114. Qian D., Xu B., Chi M., and Meng Y.S.: Uncovering the roles of oxygen vacancies in cation migration in lithium excess layered oxides. Phys. Chem. Chem. Phys. 15, 14664 (2014).

    Google Scholar 

  115. Verde M.G., Liu H., Carroll K.J., Baggetto L., Veith G.M., and Meng Y.S.: Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2. ACS Appl. Mater. Interfaces 6, 18868 (2014).

    CAS  Google Scholar 

  116. Nurullah Ates M., Jia Q., Shah A., Busnaina A., Mukerjee S., and Abrahama K.M.: Mitigation of layered to spinel conversion of a Li-rich layered metal oxide cathode material for Li-ion batteries. J. Electrochem. Soc. 161, A290–A301 (2014).

    Google Scholar 

  117. Li Q., Li G., Fu C., Luo D., Fan J., and Li L.: K+-doped Li1.2Mn0.54Co0.13Ni0.13O2: A novel cathode material with an enhanced cycling stability for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 10330 (2014).

    CAS  Google Scholar 

  118. Knight J.C., Nandakumar P., Kan W.H., and Manthiram A.: Effect of Ru substitution on the first charge–discharge cycle of lithium-rich layered oxides. J. Mater. Chem. A 3, 2006 (2015).

    CAS  Google Scholar 

  119. Yang X., Wang D., Yu R., Bai Y., Shu H., Ge L., Guo H., Wei Q., Liu L., and Wang X.: Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition. J. Mater. Chem. A 2, 3899 (2014).

    CAS  Google Scholar 

  120. Lee E.S. and Manthiram A.: Smart design of lithium-rich layered oxide cathode compositions with suppressed voltage decay. J. Mater. Chem. A 2, 3932 (2014).

    CAS  Google Scholar 

  121. Hautier Geoffroy, Jain Anubhav, Chen Hailong, Moore Charles, Ping Ong Shyue and Ceder Gerbrand, Novel mixed polyanions lithium-ion battery cathode materials predicted by high-throughput ab initio computations; Journal of Materials Chemistry, 21, 17147 (2011).

    CAS  Google Scholar 

  122. Thackeray Michael M., Wolverton Christopher and Isaacs Eric D., Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries; Energy and Environmental Science 5, 7854 (2012).

    CAS  Google Scholar 

Download references

Acknowledgment

This work at Oak Ridge National Laboratory, managed by UT Battelle, LLC, for the U.S. Department of Energy (DOE) under contract DE-AC05-00OR22725, was sponsored by the Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) Applied Battery Research (ABR) Program (Program Managers: Peter Faguy and David Howell).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debasish Mohanty.

Additional information

Notice: This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohanty, D., Li, J., Nagpure, S.C. et al. Understanding the structure and structural degradation mechanisms in high-voltage, lithium-manganese–rich lithium-ion battery cathode oxides: A review of materials diagnostics. MRS Energy & Sustainability 2, 15 (2015). https://doi.org/10.1557/mre.2015.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2015.16

Keywords

Navigation