Skip to main content

Advertisement

Log in

Long-range, low-cost electric vehicles enabled by robust energy storage

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

A variety of inherently robust energy storage technologies hold the promise to increase the range and decrease the cost of electric vehicles (EVs). These technologies help diversify approaches to EV energy storage, complementing current focus on high specific energy lithium-ion batteries.

The need for emission-free transportation and a decrease in reliance on imported oil has prompted the development of EVs. To reach mass adoption, a significant reduction in cost and an increase in range are needed. Using the cost per mile of range as the metric, we analyzed the various factors that contribute to the cost and weight of EV energy storage systems. Our analysis points to two primary approaches for minimizing cost. The first approach, of developing redox couples that offer higher specific energy than state-of-the-art lithium-ion batteries, dominates current research effort, and its challenges and potentials are briefly discussed. The second approach represents a new insight into the EV research landscape. Chemistries and architectures that are inherently more robust reduce the need for system protection and enables opportunities of using energy storage systems to simultaneously serve vehicle structural functions. This approach thus enables the use of low cost, lower specific energy chemistries without increasing vehicle weight. Examples of such systems include aqueous batteries, flow cells, and all solid-state batteries. Research progress in these technical areas is briefly reviewed. Potential research directions that can enable low-cost EVs using multifunctional energy storage technologies are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Table 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  1. Tran M., Banister D., Bishop J.D.K., and McCulloch M.D.: Realizing the electric-vehicle revolution. Nat. Clim. Change 2, 328 (2012).

    Google Scholar 

  2. U.S. Energy Information Administration: Annual Energy Review 2010, U.S. Energy Information Administration, Office of Energy Statistics, U.S. Department of Energy, Washington DC, (2011).

    Google Scholar 

  3. Elgowainy A., Han J., Poch L., Wang M., Vyas A., Mahalik M., and Rousseau A.: Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles. (2010). Available from: http://www.transportation.anl.gov/pdfs/TA/629.PDF (cited March 3, 2014).

    Google Scholar 

  4. Union of Concerned Scientists: State of Charge: Electric Vehicles’ Global Warming Emissions and Fuel-Cost Savings Across the United States. (2012). Available from: http://www.ucsusa.org/clean_vehicles/smart-transportation-solutions/advanced-vehicle-technologies/electric-cars/emissions-and-charging-costs-electric-cars.html (cited March 1, 2014).

    Google Scholar 

  5. Electric Drive Transportation Association: Electric Drive Sales Dashboard. (2014). Available from: http://www.electricdrive.org/index.php?ht=d/sp/i/20952/pid/20952 (cited March 1, 2014).

    Google Scholar 

  6. Bartlett J.: Survey: Consumers Express Concerns about Electric, Plug-in Hybrid Cars. (2012). Available from: http://www.consumerreports.org/cro/news/2012/01/survey-consumers-express-concerns-about-electric-plug-in-hybrid-cars/index.htm (cited March 3, 2014).

    Google Scholar 

  7. Eberle U. and von Helmolt R.: Sustainable transportation based on electric vehicle concepts: A brief overview. Energy Environ. Sci. 3, 689 (2010).

    CAS  Google Scholar 

  8. Krebs M.: Will Higher Gas Prices Boost Hybrid, Ev Sales? (2012). Available from: http://www.edmunds.com/industry-center/analysis/will-higher-gas-prices-boost-hybrid-ev-sales.html (cited March 3, 2014).

    Google Scholar 

  9. Howell D.: Battery Status, and Cost Reduction: Prospects in EV Everywhere Battery Workshop, Chicago, IL, 2012.

    Google Scholar 

  10. Tesla Motors: Gigafactory. (2014). Available from: www.teslamotors.com/sites/default/files/.../gigafactory.pdf (cited May 17, 2015).

    Google Scholar 

  11. USABC: Usabc Goals for Advanced Batteries for Evs. Available from: http://www.uscar.org/guest/article_view.php?articles_id=85 (cited May 16, 2015).

    Google Scholar 

  12. Wagner F.T., Lakshmanan B., and Mathias M.F.: Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 1, 2204 (2010).

    CAS  Google Scholar 

  13. J. Ward: Ev Everywhere Battery Workshop: Preliminary Target-setting Framework. (2012). Available from: https://www1.eere.energy.gov/vehiclesandfuels/pdfs/ev_everywhere/4_ward_b.pdf (cited March 3, 2014).

    Google Scholar 

  14. Verbrugge M.W. and Borroni-Bird C.E.: Transportation: Fully autonomous vehicles. In Fundamentals of Materials for Energy and Environmental Sustainability, Ginley D.S. and Cahen D. eds.; Cambridge University Press: Cambridge, 2012.

    Google Scholar 

  15. RECHARGE aisbl: E-Mobility Roadmap for the Eu Battery Industry. (2013). Available from: http://www.rechargebatteries.org/wp-content/uploads/2013/04/Battery-Roadmap-RECHARGE-05-July-2013.pdf (cited May 17, 2015).

    Google Scholar 

  16. Liu P., Wang J., Hicks-Garner J., Sherman E., Soukiazian S., Verbrugge M., Tataria H., Musser J., and Finamore P.: Aging mechanisms of LiFePO4 batteries deduced by electrochemical and structural analyses. J. Electrochem. Soc. 157, A499 (2010).

    CAS  Google Scholar 

  17. Deshpande R., Verbrugge M., Cheng Y-T., Wang J., and Liu P.: Battery cycle life prediction with coupled chemical degradation and fatigue mechanics. J. Electrochem. Soc. 159, A1730 (2012).

    CAS  Google Scholar 

  18. Wang J., Purewal J., Liu P., Hicks-Garner J., Soukazian S., Sherman E., Sorenson A., Vu L., Tataria H., and Verbrugge M.W.: Degradation of lithium ion batteries employing graphite negatives and nickel–cobalt–manganese oxide plus spinel manganese oxide positives: Part 1, aging mechanisms and life estimation. J. Power Sources 269, 937 (2014).

    CAS  Google Scholar 

  19. Pinson M.B. and Bazant M.Z.: Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction. J. Electrochem. Soc. 160, A243 (2013).

    CAS  Google Scholar 

  20. Sarasketa-Zabala E., Aguesse F., Villarreal I., Rodriguez-Martinez L.M., Lopez C.M., and Kubiak P.: Understanding lithium inventory loss and sudden performance fade in cylindrical cells during cycling with deep-discharge steps. J. Phys. Chem. C 119, 896 (2015).

    CAS  Google Scholar 

  21. Narayanrao R., Joglekar M.M., and Inguva S.: A phenomenological degradation model for cyclic aging of lithium ion cell materials. J. Electrochem. Soc. 160, A125 (2013).

    CAS  Google Scholar 

  22. Liaw B.Y., Jungst R.G., Nagasubramanian G., Case H.L., and Doughty D.H.: Modeling capacity fade in lithium-ion cells. J. Power Sources 140, 157 (2005).

    CAS  Google Scholar 

  23. Broussely M., Herreyre S., Biensan P., Kasztejna P., Nechev K., and Staniewicz R.J.: Aging mechanism in Li ion cells and calendar life predictions. J. Power Sources 97–98, 13 (2001).

    Google Scholar 

  24. Gallagher K.G., Goebel S., Greszler T., Mathias M., Oelerich W., Eroglu D., and Srinivasan V.: Quantifying the promise of lithium-air batteries for electric vehicles. Energy Environ. Sci. 7, 1555 (2014).

    CAS  Google Scholar 

  25. McDowell M.T., Lee S.W., Nix W.D., and Cui Y.: 25th anniversary article: Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries. Adv. Mater. 25, 4966 (2013).

    CAS  Google Scholar 

  26. Szczech J.R. and Jin S.: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56 (2011).

    CAS  Google Scholar 

  27. Wu H., Chan G., Choi J.W., Ryu I., Yao Y., McDowell M.T., Lee S.W., Jackson A., Yang Y., Hu L., and Cui Y.: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 309 (2012).

    Google Scholar 

  28. Park M.H., Kim M.G., Joo J., Kim K., Kim J., Ahn S., Cui Y., and Cho J.: Silicon nanotube battery anodes. Nano Lett. 9, 3844 (2009).

    CAS  Google Scholar 

  29. Xin S., Qingliu W., Juchuan L., Xingcheng X., Lott A., Wenquan L., Sheldon B.W., and Ji W.: Silicon-based nanomaterials for lithium-ion batteries: A review. Adv. Energy Mater. 4, 1300882 (23 pp.) (2014).

    Google Scholar 

  30. Xu W., Wang J., Ding F., Chen X., Nasybulin E., Zhang Y., and Zhang J-G.: Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513 (2014).

    CAS  Google Scholar 

  31. Monroe C. and Newman J.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    CAS  Google Scholar 

  32. Aurbach D., Zaban A., Gofer Y., Ely Y.E., Weissman I., Chusid O., and Abramson O.: Recent studies of the lithium-liquid electrolyte interface electrochemical, morphological and spectral studies of a few important systems. J. Power Sources 54, 76 (1995).

    CAS  Google Scholar 

  33. Aurbach D., Weissman I., Zaban A., and Chusid O.: Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts. Electrochim. Acta 39, 51 (1994).

    CAS  Google Scholar 

  34. Shiraishi S., Kanamura K., and Takehara Z.: Surface condition changes in lithium metal deposited in nonaqueous electrolyte containing Hf by dissolution-deposition cycles. J. Electrochem. Soc. 146, 1633 (1999).

    CAS  Google Scholar 

  35. Mogi R., Inaba M., Jeong S.K., Iriyama Y., Abe T., and Ogumi Z.: Effects of some organic additives on lithium deposition in propylene carbonate. J. Electrochem. Soc. 149, A1578 (2002).

    CAS  Google Scholar 

  36. Stark J.K., Ding Y., and Kohl P.A.: Dendrite-free electrodeposition and reoxidation of lithium-sodium alloy for metal-anode battery. J. Electrochem. Soc. 158, A1100 (2011).

    CAS  Google Scholar 

  37. Ding F., Xu W., Graff G.L., Zhang J., Sushko M.L., Chen X.L., Shao Y.Y., Engelhard M.H., Nie Z.M., Xiao J., Liu X.J., Sushko P.V., Liu J., and Zhang J.G.: Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450 (2013).

    CAS  Google Scholar 

  38. Sadoway D.R., Huang B.Y., Trapa P.E., Soo P.P., Bannerjee P., and Mayes A.M.: Self-doped block copolymer electrolytes for solid-state, rechargeable lithium batteries. J. Power Sources 97–98, 621 (2001).

    Google Scholar 

  39. Bouchet R., Maria S., Meziane R., Aboulaich A., Lienafa L., Bonnet J.P., Phan T.N.T., Bertin D., Gigmes D., Devaux D., Denoyel R., and Armand M.: Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452 (2013).

    CAS  Google Scholar 

  40. Bates J.B., Dudney N.J., Neudecker B., Ueda A., and Evans C.D.: Thin-film lithium and lithium-ion batteries. Solid State Ionics 135, 33 (2000).

    CAS  Google Scholar 

  41. Barghamadi M., Kapoor A., and Wen C.: A review on Li–S batteries as a high efficiency rechargeable lithium battery. J. Electrochem. Soc. 160, A1256 (2013).

    CAS  Google Scholar 

  42. Bresser D., Passerini S., and Scrosati B.: Recent progress and remaining challenges in sulfur-based lithium secondary batteries—A review. Chem. Commun. 49, 10545 (2013).

    CAS  Google Scholar 

  43. Yang Y., Zheng G., and Cui Y.: Nanostructured sulfur cathodes. Chem. Soc. Rev. 42, 3018 (2013).

    CAS  Google Scholar 

  44. Wang D-W., Zeng Q., Zhou G., Yin L., Li F., Cheng H-M., Gentle I.R., and Lu G.Q.M.: Carbon-sulfur composites for Li–S batteries: Status and prospects. J. Mater. Chem. A 1, 9382 (2013).

    CAS  Google Scholar 

  45. Ji X. and Nazar L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821 (2010).

    CAS  Google Scholar 

  46. Ji X., Lee K.T., and Nazar L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).

    CAS  Google Scholar 

  47. Wan W., Pu W., and Ai D.: Research progress in lithium sulfur battery. Prog. Chem. 25, 1830 (2013).

    CAS  Google Scholar 

  48. Yin Y-X., Xin S., Guo Y-G., and Wan L-J.: Lithium–sulfur batteries: Electrochemistry, materials, and prospects. Angew. Chem., Int. Ed. 52, 13186 (2013).

    CAS  Google Scholar 

  49. Zhang S.S.: Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions. J. Power Sources 231, 153 (2013).

    CAS  Google Scholar 

  50. Pope M.A. and Aksay I.A.: Structural design of cathodes for Li–S batteries. Adv. Energy Mater. 5 (2015). doi: 10.1002/aenm.201500124.

  51. Balaish M., Kraytsberg A., and Ein-Eli Y.: A critical review on lithium–air battery electrolytes. Phys. Chem. Chem. Phys. 16, 2801 (2014).

    CAS  Google Scholar 

  52. Rahman M.A., Wang X., and Wen C.: A review of high energy density lithium–air battery technology. J. Appl. Electrochem. 44, 5 (2014).

    CAS  Google Scholar 

  53. Garcia-Araez N. and Novak P.: Critical aspects in the development of lithium–air batteries. J. Solid State Electrochem. 17, 1793 (2013).

    CAS  Google Scholar 

  54. Rahman M.A., Wang X., and Wen C.: High energy density metal–air batteries: A review. J. Electrochem. Soc. 160, A1759 (2013).

    CAS  Google Scholar 

  55. Shao Y., Ding F., Xiao J., Zhang J., Xu W., Park S., Zhang J.-G., Wang Y., and Liu J.: Making Li–air batteries rechargeable: Material challenges. Adv. Funct. Mater. 23, 987 (2013).

    CAS  Google Scholar 

  56. Christensen J., Albertus P., Sanchez-Carrera R.S., Lohmann T., Kozinsky B., Liedtke R., Ahmed J., and Kojic A.: A critical review of Li/Air batteries. J. Electrochem. Soc. 159, R1 (2012).

    CAS  Google Scholar 

  57. Van Noorden R.: The rechargeable revolution: A better battery. Nature 507, 3 (2014).

    Google Scholar 

  58. Orikasa Y., Masese T., Koyama Y., Mori T., Hattori M., Yamamoto K., Okado T., Huang Z-D., Minato T., Tassel C., Kim J., Kobayashi Y., Abe T., Kageyama H., and Uchimoto Y.: High energy density rechargeable magnesium battery using earth-abundant and non-toxic elements. Sci. Rep. 4, 5622 (2014).

    CAS  Google Scholar 

  59. Lin M-C., Gong M., Lu B., Wu Y., Wang D-Y., Guan M., Angell M., Chen C., Yang J., Hwang B-J., and Dai H.: An ultrafast rechargeable aluminium-ion battery. Nature 520, 324 (2015).

    CAS  Google Scholar 

  60. Harmon J., Gopalakrishnan P., and Mikolajczak C.: Us Faa-Style Flammability Assessment of Lithium-ion Batteries Packed with and Contained in Equipments (Un3481). Exponent (2010). Available from: http://www.prba.org/wp-content/uploads/Exponent_Report_on_Laptop_Fire_Testing-WRFMAIN-13116235-v11.pdf (cited March 3, 2014).

    Google Scholar 

  61. Gabrielli D.: Summary of safety related vehicle design issues. In 3rd Annual Electric Vehicle Safety Standards Summit, Detroit, MI, 2012.

    Google Scholar 

  62. Smith B.: Chevy Volt Battery Incident Overview Report. (2012). Available from: http://www-odi.nhtsa.dot.gov/acms/cs/jaxrs/download/doc/UCM399393/INRP-PE11037-49880.pdf (cited March 3, 2014).

    Google Scholar 

  63. ARPA-E: Advanced Management and Protection of Energy Storage Devices. (2014). Available from: http://arpa-e.energy.gov/?q=arpa-e-site-page/view-programs (cited March 3, 2014).

    Google Scholar 

  64. Nagasubramanian G. and Fenton K.: Reducing Li-ion safety hazards through use of non-flammable solvents and recent work at Sandia national laboratories. Electrochim. Acta 101, 3 (2013).

    CAS  Google Scholar 

  65. Roth E.P., Doughty D.H., and Pile D.L.: Effects of separator breakdown on abuse response of 18650 Li-ion cells. J. Power Sources 174, 579 (2007).

    CAS  Google Scholar 

  66. Kim H.C. and Wallington T.J.: Life-cycle energy and greenhouse gas emission benefits of lightweighting in automobiles: Review and harmonization. Environ. Sci. Technol. 47, 6089 (2013).

    CAS  Google Scholar 

  67. Liu J., Zhang J-G., Yang Z., Lemmon J.P., Imhoff C., Graff G.L., Li L., Hu J., Wang C., Xiao J., Xia G., Viswanathan V.V., Baskaran S., Sprenkle V., Li X., Shao Y., and Schwenzer B.: Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid. Adv. Funct. Mater. 23, 929 (2013).

    CAS  Google Scholar 

  68. Wang W., Luo Q., Li B., Wei X., Li L., and Yang Z.: Recent progress in redox flow battery research and development. Adv. Funct. Mater. 23, 970 (2013).

    CAS  Google Scholar 

  69. Zhou Z., Benbouzid M., Charpentier J.F., Scuiller F., and Tang T.: A review of energy storage technologies for marine current energy systems. Renewable Sustainable Energy Rev. 18, 390 (2013).

    CAS  Google Scholar 

  70. Leung P., Li X., de Leon C.P., Berlouis L., Low C.T.J., and Walsh F.C.: Progress in redox flow batteries, remaining challenges and their applications in energy storage. Rsc Adv. 2, 10125 (2012).

    CAS  Google Scholar 

  71. Duduta M., Ho B., Wood V.C., Limthongkul P., Brunini V.E., Carter W.C., and Chiang Y-M.: Semi-solid lithium rechargeable flow battery. Adv. Energy Mater. 1, 511 (2011).

    CAS  Google Scholar 

  72. Dunn B., Kamath H., and Tarascon J-M.: Electrical energy storage for the grid: A battery of choices. Science 334, 928 (2011).

    CAS  Google Scholar 

  73. Parker J.F., Chervin C.N., Nelson E.S., Rolison D.R., and Long J.W.: Wiring zinc in three dimensions Re-writes battery performance-dendrite-free cycling. Energy Environ. Sci. 7, 1117 (2014).

    CAS  Google Scholar 

  74. Beck F. and Ruetschi P.: Rechargeable batteries with aqueous electrolytes. Electrochim. Acta 45, 2467 (2000).

    CAS  Google Scholar 

  75. Brost R.D.: Performance of valve-regulated lead acid batteries in Ev1 extended series strings. In The Thirteenth Annual Battery Conference on Applications and Advances, California State University, Long Beach, California, 1998.

    Google Scholar 

  76. Beverskog B. and Puigdomenech I.: Revised pourbaix diagrams for nickel at 25–300 degrees C. Corros. Sci. 39, 969 (1997).

    CAS  Google Scholar 

  77. Cheng F.Y., Liang J., Tao Z.L., and Chen J.: Functional materials for rechargeable batteries. Adv. Mater. 23, 1695 (2011).

    CAS  Google Scholar 

  78. Gu S., Gong K., Yan E.Z., and Yan Y.: A multiple ion-exchange membrane design for redox flow batteries. Energy Environ. Sci. 7, 2986–2998 (2014).

    CAS  Google Scholar 

  79. Ruetschi P.: Aging mechanisms and service life of lead–acid batteries. J. Power Sources 127, 33 (2004).

    CAS  Google Scholar 

  80. Luo J.Y., Cui W.J., He P., and Xia Y.Y.: Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2, 760 (2010).

    Google Scholar 

  81. Trevey J.E., Gross A.F., Wang J., Liu P., and Vajo J.J.: Stable cycling and excess capacity of a nanostructured Sn electrode based on Sn(CH3COO)2 confined within a nanoporous carbon scaffold. Nanotechnology 24, 6 (2013).

    Google Scholar 

  82. Cabana J., Monconduit L., Larcher D., and Palacin M.R.: Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, E170 (2010).

    CAS  Google Scholar 

  83. Li H., Wang Z., Chen L., and Huang X.: Research on advanced materials for Li-ion batteries. Adv. Mater. 21, 4593 (2009).

    Google Scholar 

  84. Chen Z.H., Qin Y., and Amine K.: Redox shuttles for safer lithium-ion batteries. Electrochim. Acta 54, 5605 (2009).

    CAS  Google Scholar 

  85. Quartarone E. and Mustarelli P.: Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chem. Soc. Rev. 40, 2525 (2011).

    CAS  Google Scholar 

  86. Takada K.: Progress and prospective of solid-state lithium batteries. Acta Mater. 61, 759 (2013).

    CAS  Google Scholar 

  87. Trevey J.E., Gilsdorf J.R., Stoldt C.R., Lee S.-H., and Liu P.: Electrochemical Investigation of all-solid-state lithium batteries with a high capacity sulfur-based electrode. J. Electrochem. Soc. 159, A1019 (2012).

    CAS  Google Scholar 

  88. Yersak T.A., Macpherson H.A., Kim S.C., Le V-D., Kang C.S., Son S-B., Kim Y-H., Trevey J.E., Oh K.H., Stoldt C., and Lee S-H.: Solid state enabled reversible four electron storage. Adv. Energy Mater. 3, 120 (2013).

    CAS  Google Scholar 

  89. Bates J.B., Dudney N.J., Lubben D.C., Gruzalski G.R., Kwak B.S., Yu X.H., and Zuhr R.A.: Thin-film rechargeable lithium batteries. J. Power Sources 54, 58 (1995).

    CAS  Google Scholar 

  90. Xu K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104, 4303 (2004).

    CAS  Google Scholar 

  91. Takada K., Aotani N., and Kondo S.: Electrochemical behaviors of Li+ ion conductor, Li3po4–Li2s–Sis2. J. Power Sources 43, 135 (1993).

    CAS  Google Scholar 

  92. Hayashi A., Minami K., Mizuno F., and Tatsumisago M.: Formation of Li+ superionic crystals from the Li2S–P2S5 melt-quenched glasses. J. Mater. Sci. 43, 1885 (2008).

    CAS  Google Scholar 

  93. Mizuno F., Hayashi A., Tadanaga K., and Tatsumisago M.: New, highly ion-conductive crystals precipitated from Li2S–P2S5 glasses. Adv. Mater. 17, 918 (2005).

    CAS  Google Scholar 

  94. Inaguma Y., Chen L.Q., Itoh M., Nakamura T., Uchida T., Ikuta H., and Wakihara M.: High ionic-conductivity in lithium lanthanum titanate. Solid State Commun. 86, 689 (1993).

    CAS  Google Scholar 

  95. Kamaya N., Homma K., Yamakawa Y., Hirayama M., Kanno R., Yonemura M., Kamiyama T., Kato Y., Hama S., Kawamoto K., and Mitsui A.: A lithium superionic conductor. Nat. Mater. 10, 682 (2011).

    CAS  Google Scholar 

  96. Trevey J.E., Stoldt C.R., and Lee S.H.: High power nanocomposite Tis2 cathodes for all-solid-state lithium batteries. J. Electrochem. Soc. 158, A1282 (2011).

    CAS  Google Scholar 

  97. Koyama Y., Chin T.E., Rhyner U., Holman R.K., Hall S.R., and Chiang Y.M.: Harnessing the actuation potential of solid-state intercalation compounds. Adv. Funct. Mater. 16, 492 (2006).

    CAS  Google Scholar 

  98. Li W.Y., Zheng G.Y., Yang Y., Seh Z.W., Liu N., and Cui Y.: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach. Proc. Natl. Acad. Sci. U. S. A. 110, 7148 (2013).

    CAS  Google Scholar 

  99. Christodoulou L. and Venables J.D.: Multifunctional material systems: The first generation. JOM 55, 39 (2003).

    Google Scholar 

  100. Snyder J.F., Wetzel E.D., and Watson C.M.: Improving multifunctional behavior in structural electrolytes through copolymerization of structure- and conductivity-promoting monomers. Polymer 50, 4906 (2009).

    CAS  Google Scholar 

  101. Asp L.E.: Multifunctional composite materials for energy storage in structural load paths. Plast., Rubber Compos. 42, 144 (2013).

    CAS  Google Scholar 

  102. Leijonmarck S., Carlson T., Lindbergh G., Asp L.E., Maples H., and Bismarck A.: Solid polymer electrolyte-coated carbon fibres for structural and novel micro batteries. Compos. Sci. Technol. 89, 149 (2013).

    CAS  Google Scholar 

  103. Ekstedt S., Wysocki M., and Asp L.E.: Structural batteries made from fibre reinforced composites. Plast., Rubber Compos. 39, 148 (2010).

    CAS  Google Scholar 

  104. Liu P., Sherman E., and Jacobsen A.: Design and fabrication of multifunctional structural batteries. J. Power Sources 189, 646 (2009).

    CAS  Google Scholar 

  105. MacKenzie A.: Volvo to Replace Body Parts with Energized Carbon Fiber Panels. (2013). Available from: http://www.gizmag.com/volvo-battery-infused-structural-components/29437/ (cited March 28, 2014).

    Google Scholar 

  106. Sahraei E. and Wierzbicki T.: Modeling of cylindrical and pouch cells for crash energy absorption and electric short circuit. In ARPA-E Crash Safe Energy Storage Systems for Electric Vehicles Workshop, Golden, CO, 2012.

    Google Scholar 

  107. Chen X., Surani F.B., Kong X., Punyamurtula V.K., and Qiao Y.: Energy absorption performance of steel tubes enhanced by a nanoporous material functionalized liquid. Appl. Phys. Lett. 89, (2006).

  108. Ginsberg S.: Crash deformable battery concept for electric vehicles. In Aachen Body Engineering Days 2011, Aachen, Germany, 2011.

    Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Jacob Ward of the U.S. Department of Energy who provided the early framework for the EV battery cost analysis. Additionally the authors would like to thank Dr. Kevin Gallagher and the sponsorship of the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Program (VTP) for their analysis and projections of future battery energy density and cost trends.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, P., Ross, R. & Newman, A. Long-range, low-cost electric vehicles enabled by robust energy storage. MRS Energy & Sustainability 2, 12 (2015). https://doi.org/10.1557/mre.2015.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2015.13

Keywords

Navigation