Skip to main content
Log in

From highly graphitic to amorphous carbon dots: A critical review

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

Graphitic and amorphous C-dots share common characteristics in their photoluminescence behavior. However, the graphitic dots have a lead as electrocatalyst for fuel cells, sensitizers, and electron acceptors for solar cells. The emergence of carbogenic nanoparticles (C-dots) as a new class of photoluminescent (PL) nanoemitters is directly related to their economical preparation, nontoxic nature, versatility, and tunability. C-dots are typically prepared by pyrolytic or oxidative treatment of suitable precursors. While the surface functionalities critically affect the dispersibility and the emission intensity of C-dots in a given environment, it is the nature of the carbogenic core that actually imparts certain intrinsic properties. Depending on the synthetic approach and the starting materials, the structure of the carbogenic core can vary from highly graphitic all the way to completely amorphous. This critical review focuses on correlating the functions of C-dots with the graphitic or amorphous nature of their carbogenic cores. The systematic classification on that basis can provide insights on the origins of their intriguing photophysical behavior and can contribute in realizing their full potential in challenging applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.

Similar content being viewed by others

References

  1. Xu X., Ray R., Gu Y., Ploehn H., Gearheart L., Raker K., and Scrivens W.A.: Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J. Am. Chem. Soc. 126, 12736 (2004).

    CAS  Google Scholar 

  2. Novoselov K., Geim A., Morozov S., Jiang D., Zhang Y., Dubonos S., Grigorieva I.V., and Firsov A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    CAS  Google Scholar 

  3. Kroto H., Heath J., O’Brien S., Curl R.F., and Smalley R.E.: C60: Buckminsterfullerene. Nature 318, 162 (1985).

    CAS  Google Scholar 

  4. Iijima S.: Helical microtubules of graphitic carbon. Nature 354, 56 (1991).

    CAS  Google Scholar 

  5. Baker S.N. and Baker G.A.: Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. 49, 6726 (2010).

    CAS  Google Scholar 

  6. da Silva J.C.G.E. and Goncalves H.M.R.: Analytical and bioanalytical applications of carbon dots. Trends Anal. Chem. 30, 1327 (2011).

    Google Scholar 

  7. Li H., Kang Z., Liu Y., and Lee S-T.: Carbon nanodots: Synthesis, properties and applications. J. Mater. Chem. 22, 24230 (2012).

    CAS  Google Scholar 

  8. Shen J., Zhu Y., Yang X., and Li C.: Graphene quantum dots: Emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem. Commun. 48, 3686 (2012).

    CAS  Google Scholar 

  9. Li L., Wu G., Yang G., Peng J., Zhao J., and Zhu J-J.: Focusing on luminescent graphene quantum dots: Current status and future perspectives. Nanoscale 5, 4015 (2013).

    CAS  Google Scholar 

  10. Luo P., Sahu S., Yang S-T., Sonkar S., Wang J., Wang H., LeCroy G., Cao L., and Sun Y-P.: Carbon “quantum” dots for optical bioimaging. J. Mater. Chem. B 1, 2116 (2013).

    CAS  Google Scholar 

  11. Zhang Z., Zhang J., Chen N., and Qu L.: Graphene quantum dots: An emerging material for energy-related applications and beyond. Energy Environ. Sci. 5, 8869 (2012).

    CAS  Google Scholar 

  12. Ponomarenko L., Schedin F., Katsnelson M., Yang R., Hill E., Novoselov K.S., and Geim A.K.: Chaotic Dirac billiard in graphene quantum dots. Science 320, 356 (2008).

    CAS  Google Scholar 

  13. Yongqiang D., Hongchang P., Shuyan R., Congqiang C., Yuwu C., and Ting Y.: Etching single-wall carbon nanotubes into green and yellow single-layer graphene quantum dots. Carbon 64, 245 (2013).

    Google Scholar 

  14. Gokus T., Nair R., Bonetti A., Böhmler M., Lombardo A., Novoselov K., Geim A., Ferrari A.C., and Hartschuh A.: Making graphene luminescent by oxygen plasma treatment. ACS Nano 3, 3963 (2009).

    CAS  Google Scholar 

  15. Lu J., Yeo P.S.E., Gan C., Wu P., and Loh K.P.: Transforming C 60 molecules into graphene quantum dots. Nat. Nanotechnol. 6, 247 (2011).

    CAS  Google Scholar 

  16. Yan X., Cui X., and Li L.: Synthesis of large, stable colloidal graphene quantum dots with tunable size. J. Am. Chem. Soc. 132, 5944 (2010).

    CAS  Google Scholar 

  17. Yan X., Cui X., Li B., and Li L-S.: Large, solution-processable graphene quantum dots as light absorbers for photovoltaics. Nano Lett. 10, 1869 (2010).

    CAS  Google Scholar 

  18. Sadhanala H., Khateia J., and Nanda K.K.: Facile hydrothermal synthesis of carbon nanoparticles and possible application as white light phosphors and catalysts for the reduction of nitrophenol. RSC Adv. 4, 11481–11485 (2014).

    CAS  Google Scholar 

  19. Sun Y-P., Zhou B., Lin Y., Wang W., Fernando K.A.S., Pathak P., Meziani M., Harruff B., Wang X., Wang H., Luo P., Yang H., Kose M., Chen B., Veca L.M., and Xie S-Y.: Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 128, 7756 (2006).

    CAS  Google Scholar 

  20. Peng J., Gao W., Gupta B., Liu Z., Romero-Aburto R., Ge L., Song L., Alemany L. B., Zhan X., Gao G., Vithayathil S. A., Kaipparettu B., Marti A., Hayashi T., Zhu J-J., and Ajayan P.M.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844 (2012).

    CAS  Google Scholar 

  21. Lin L. and Zhan S.: Creating high yield water soluble luminescent graphene quantum dots via exfoliating and disintegrating carbon nanotubes and graphite flakes. Chem. Commun. 48, 10177 (2012).

    CAS  Google Scholar 

  22. Pan D., Zhang J., Li Z., and Wu M.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 22, 734 (2010).

    Google Scholar 

  23. Zhou J., Booker C., Li R., Zhou X., Sham T-K., Sun X., and Ding Z.: An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J. Am. Chem. Soc. 129, 744 (2007).

    CAS  Google Scholar 

  24. Zheng L., Chi Y., Dong Y., Lin J., and Wang B.: Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J. Am. Chem. Soc. 131, 4564 (2009).

    CAS  Google Scholar 

  25. Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., T sang C.H.A., Yang X., and Lee S-T.: Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. Int. Ed. 49, 4430 (2010).

    CAS  Google Scholar 

  26. Yu X., Liu R., Zhang G., and Cao H.: Carbon quantum dots as novel sensitizers for photoelectrochemical solar hydrogen generation and their size-dependent effect. Nanotechnology 24, 335401 (2013).

    Google Scholar 

  27. Ming H., Ma Z., Liu Y., Pan K., Yu H., Wang F., and Kang Z.H.: Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property. Dalton Trans. 41, 9526 (2012).

    CAS  Google Scholar 

  28. Lu J., Yang J., Wang J., Lim A., Wang S., and Loh K.P.: One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3, 2367–2375 (2009).

    CAS  Google Scholar 

  29. Li Y., Hu Y., Zhao Y., Shi G., Deng L., Hou Y., and Qu L.: An electrochemical venue to green luminescent graphene quantum dots as potential electronacceptors for photovoltaics. Adv. Mater. 23, 776 (2011).

    Google Scholar 

  30. Niyogi S., Bekyarova E., Itkis M., Zhang H., Shepperd K., Hicks J., Sprinkle M., Berger C., Lau C., de Heer W., Conrad E.H., and Haddon R.C.: Spectroscopy of covalently functionalized graphene. Nano Lett. 10, 4061 (2010).

    CAS  Google Scholar 

  31. Li H., He X., Liu Y., Yu H., Kang Z., and Lee S-T.: Synthesis of fluorescent carbon nanoparticles directly from active carbon via a one-step ultrasonic treatment. Mater. Res. Bull. 46, 147 (2011).

    CAS  Google Scholar 

  32. Peng H. and Travas-Sejdic J.: Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem. Mater. 21, 5563 (2009).

    CAS  Google Scholar 

  33. Zhou L., He B., and Huang J.: Amphibious fluorescent carbon dots: One-step green synthesis and application for light-emitting polymer nanocomposites. Chem. Commun. 49, 8078 (2013).

    CAS  Google Scholar 

  34. Liu S., Tian J., Wang L., Zhang Y., Qin X., Luo Y., Asiri A., Al-Youbi A.O., and Sun X.: Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv. Mater. 24, 2037 (2012).

    CAS  Google Scholar 

  35. Liang Q., Ma W., Shi Y., Li Z., and Yang X.: Easy synthesis of highly fluorescent carbon quantum dots from gelatine and their luminescent properties and applications. Carbon 60, 421 (2013).

    CAS  Google Scholar 

  36. Sahu S., Behera B., Maiti T.K., and Mohapatra S.: Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem. Commun. 48, 8835 (2012).

    CAS  Google Scholar 

  37. Zhu C., Zhai J., and Dong S.: Bifunctional fluorescent carbon nanodots: Green synthesis via soy milk and application as metal-free electrocatalysts for oxygen reduction. Chem. Commun. 48, 9367 (2012).

    CAS  Google Scholar 

  38. Huang H., Lv J-J., Zhou D-L., Bao N., Xu Y., Wang A-J., and Feng J-J.: One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv. 3, 21691 (2013).

    CAS  Google Scholar 

  39. Zhang Z., Hao J., Zhang J., Zhang B., and Tang J.: Protein as the source for synthesizing fluorescent carbon dots by a one-pot hydrothermal route. RSC Adv. 2, 8599 (2012).

    CAS  Google Scholar 

  40. Gu J., Wang W., Zhang Q., Meng Z., Jia X., and Xi K.: Synthesis of fluorescent carbon nanoparticles from polyacrylamide for fast cellular endocytosis. RSC Adv. 3, 15589 (2013).

    CAS  Google Scholar 

  41. Wang Q., Huang X., Long Y., Wang X., Zhang H., Zhu R., Liang L., Teng P., and Zheng H.: Hollow luminescent carbon dots for drug delivery. Carbon 61, 640 (2013).

    Google Scholar 

  42. Liu R., Wu D., Liu S., Koynov K., Knoll W., and Li Q.: An aqueous route to multicolor photoluminescent carbon dots, using silica spheres as carriers. Angew. Chem. Int. Ed. 48, 4598 (2009).

    Google Scholar 

  43. Hsu P-C., Shih Z-Y., Lee C-H., and Chang H-T.: Synthesis and analytical applications of photoluminescent carbon nanodots. Green Chem. 14, 917 (2012).

    CAS  Google Scholar 

  44. Krysmann M., Kelarakis A., and Giannelis E.P.: Photoluminescent carbogenic nanoparticles directly derived from crude biomass. Green Chem. 14, 3141 (2012).

    CAS  Google Scholar 

  45. Wang J., Wang C-F., and Chen S.: Amphiphilic egg-derived carbon dots: Rapid plasma fabrication, pyrolysis process and multicolor printing patterns. Angew. Chem. Int. Ed. 51, 9297 (2012).

    CAS  Google Scholar 

  46. Wang J., Sahu S., Sonkar S., Tackett K.N. II, Sun K., Liu Y, Maimaiti H., Anilkumar P., and Sun Y-P.: Versatility with carbon dots–From overcooked BBQ to brightly fluorescent agents and photocatalysts. RSC Adv. 3, 15604 (2013).

    CAS  Google Scholar 

  47. Tan M., Zhang L., Tang R., Song X., Li Y., Wu H., Wang Y., Lv G., Liu W., and Maa X.: Enhanced photoluminescence and characterization of multicolor carbon dots using plant soot as a carbon source. Talanta 115, 950 (2013).

    CAS  Google Scholar 

  48. Jaiswal A., Ghosh S.S., and Chattopadhyay A.: One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem. Commun. 48, 407 (2012).

    CAS  Google Scholar 

  49. Bourlinos A., Stassinopoulos A., Anglos D., Zboril R., Karakassides M., and Giannelis E.P.: Surface functionalized carbogenic quantum dots. Small 4, 455 (2008).

    CAS  Google Scholar 

  50. Kelarakis A., Yoon K., Sics I., Somani R., Hsiao B.S., and Chu B.: Uniaxial deformation of an elastomer nanocomposite containing modified carbon nanofibers by in-situ synchrotron x-ray diffraction. Polymer 46, 5103 (2005).

    CAS  Google Scholar 

  51. Zheng H., Wang Q., Long Y., Zhang H., Huang X., and Zhu R.: Enhancing the luminescence of carbon dots with a reduction pathway. Chem. Commun. 47, 10650 (2011).

    CAS  Google Scholar 

  52. Qian Z., Ma J., Shan X., Shao L., Zhou J., Chen J., and Feng H.: Surface functionalization of graphene quantum dots with small organic molecules from photoluminescence modulation to bioimaging applications: An experimental and theoretical investigation. RSC Adv. 3, 14571 (2013).

    CAS  Google Scholar 

  53. Sun Y., Wang X., Lu F., Cao L., Meziani M., Luo P.J.G., Gu L.R., and Veca L.M.: Doped carbon nanoparticles as a new platform for highly photoluminescent dots. J. Phys. Chem. C 112, 18295 (2008).

    CAS  Google Scholar 

  54. Qu K., Wang J., Ren J., and Qu X.: Carbon dots prepared by hydrothermal treatment of dopamine as an effective fluorescent sensing platform for the label-free detection of iron (III) ions and dopamine. Chem. Eur. J. 19, 7243 (2013).

    CAS  Google Scholar 

  55. Bourlinos A., Karakassides M., Kouloumpis A., Gournis D., Bakandritsos A., Papagiannouli I., Aloukos P., Couris S., Hola K., Zboril R., Krysmann M., and Giannelis E.P.: Synthesis, characterization and non-linear optical response of organophilic carbon dots. Carbon 61, 640 (2013).

    CAS  Google Scholar 

  56. Shen L., Zhang L., Chen M., Chen X., and Wang J.: The production of pH-sensitive photoluminescent carbon nanoparticles by the carbonization of polyethylenimine and their use for bioimaging. Carbon 55, 343 (2013).

    CAS  Google Scholar 

  57. Krysmann M., Kelarakis A., Dallas P., and Giannelis E.P.: Formation mechanism of carbogenic nanoparticles with dual photoluminescence emission. J. Am. Chem. Soc. 134, 747 (2012).

    CAS  Google Scholar 

  58. Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., and Yang B.: Highly photoluminescent carbon dots for multicolor patterning, sensors, and bioimaging. Angew. Chem. Int. Ed. 52, 3953 (2013).

    CAS  Google Scholar 

  59. Zhu H., Wang X., Li Y., Wang Z., Yang F., and Yang X.: Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem. Commun. 5118 (2009).

    Google Scholar 

  60. Wang F., Xie Z., Zhang H., Liu C., and Zhang Y.: Highly luminescent organosilane-functionalized carbon dots. Adv. Funct. Mater. 21, 1027 (2011).

    CAS  Google Scholar 

  61. Mirtchev P., Henderson E., Soheilnia N., Yipc C.M., and Ozin G.A.: Solution phase synthesis of carbon quantum dots as sensitizers for nanocrystalline TiO 2 solar cells. J. Mater. Chem. 22, 1265 (2012).

    CAS  Google Scholar 

  62. Hu S-L., Niu K-Y., Sun J., Yang J., Zhao N-Q., and Du X-W.: One-step synthesis of fluorescent carbon nanoparticles by laser irradiation. J. Mater. Chem. 19, 484 (2009).

    CAS  Google Scholar 

  63. Li Y., Zhao Y., Cheng H., Hu Y., Shi G., Dai L., and Qu L.: Nitrogen-doped graphene quantum dots with oxygen-rich functional groups. J. Am. Chem. Soc. 134, 15 (2012).

    CAS  Google Scholar 

  64. Sun D., Ban R., Zhang P-H., Wu G-H., Zhang J-R., and Zhu J-J.: Hair fiber as a precursor for synthesizing of sulfur- and nitrogen-co-doped carbon dots with tunable luminescence properties. Carbon 4, 424 (2013).

    Google Scholar 

  65. Dong Y., Pang H., Yang H., Guo C., Shao J., Chi Y., Ming Li C., and Yu T.: Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. A ngew. Chem. Int. Ed. 125, 7954 (2013).

    Google Scholar 

  66. Qu D., Zheng M., Du P., Zhou Y., Zhang L., Li D., Tan H., Zhao Z., Xie Z., and Sun Z.: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272 (2013).

    CAS  Google Scholar 

  67. Li F., Liu C., Yang J., Wang Z., Liu W., and Tian F.: Mg/N double doping strategy to fabricate extremely high luminescent carbon dots for bioimaging. RSC Adv. 4, 3201 (2014).

    CAS  Google Scholar 

  68. Srivastava S., Awasthi R., Tripathi D., Rai M., Agarwal V., Agrawal V., Gajbhiye N.S., and Gupta R.K.: Magnetic-nanoparticle-doped carbogenic nanocomposite: An effective magnetic resonance/fluorescence multimodal imaging probe. Small 8, 1099 (2012).

    CAS  Google Scholar 

  69. Bourlinos A., Bakandritsos A., Kouloumpis A., Gournis D., Krysmann M., Giannelis E., Polakova K., Safarova K., Holaf K., and Zboril R.: Gd(III)-doped carbon dots as a dual fluorescent-MRI probe. J. Mater. Chem. 22, 23327 (2012).

    CAS  Google Scholar 

  70. Jahan S., Mansoor F., Naz S., Lei J., and Kanwal S.: Oxidative synthesis of highly fluorescent Boron/Nitrogen co-doped carbon nanodots enabling detection of photosensitizer and carcinogenic dye. Anal. Chem. 85, 10232 (2013).

    CAS  Google Scholar 

  71. Eda G., Lin. Y-Y., Mattevi C., Yamaguchi H., Chen H-A., Chen I-S., Chen C-W., and Chhowalla M.: Blue photoluminescence from chemically derived graphene oxide. Adv. Mater. 22, 505 (2010).

    CAS  Google Scholar 

  72. Chien C-T., Li S-S., Lai W-J., Yeh Y-C., Chen H-A., Chen I-S., Chen L-C., Chen K-H., Nemoto T., Isoda S., Chen M., Fujita T., Eda G., Yamaguchi H., Chhowalla M., and Chen C-W.: Tunable photoluminescence from graphite oxide. Angew. Chem. Int. Ed. 51, 6662 (2012).

    CAS  Google Scholar 

  73. Cao L., Meziani M., Sahu S., and Sun Y.P.: Photoluminescence properties of graphene versus other carbon nanomaterials. Acc. Chem. Res. 46, 171 (2013).

    CAS  Google Scholar 

  74. Li H., He X., Liu Y., Huang H., Lian S., Lee S-T., and Kang Z.: One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49, 605 (2011).

    CAS  Google Scholar 

  75. Haase M. and Schafer H.: Upconverting nanoparticles. Angew. Chem. Int. Ed., 50, 5808 (2011).

    CAS  Google Scholar 

  76. Cao L., Wang X., Meziani M., Lu F., Wang H., Luo P., Lin Y., Harruff B., Veca L., Murray D., Xie S-Y., and Sun Y-P.: Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 129, 11318 (2007).

    CAS  Google Scholar 

  77. Yang S-T., Cao L., Luo P., Lu F., Wang X., Wang H., Meziani M., Liu Y., Qi G., and Sun Y-P.: Carbon dots for optical imaging in vivo. J. Am. Chem. Soc. 131, 11308 (2009).

    CAS  Google Scholar 

  78. Ding H., Cheng L-W., Ma Y-Y., Kong J-L., and Xiong H-M.: Luminescent carbon quantum dots and their application in cell imaging. New J. Chem. 37, 2515.

  79. Zhang Y-Y., Wu M., Wang Y-Q., He X-W., Li W-Y., and Feng X-Z.: A new hydrothermal refluxing route to strong fluorescent carbon dots and its application as fluorescent imaging agent. Talanta 117, 196 (2013).

    CAS  Google Scholar 

  80. Zhao Q-L., Zhang Z-L., Huang B-H., Peng J., Zhang M., and Pang D-W.: Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chem. Commun. 5116 (2008).

    Google Scholar 

  81. Nurunnabi M., Khatun Z., Huh K., Park S., Lee D., Cho K.J., and Lee Y.: In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 7, 6858 (2013).

    CAS  Google Scholar 

  82. Yang S-T., Wang X., Wang H., Lu F., Luo P., Cao L., Meziani M., Liu J-H., Liu Y., Chen M., Huang Y., and Sun Y-P.: Carbon dots as nontoxic and high-performance fluorescence imaging agents. J. Phys. Chem. C 113, 18110 (2009).

    CAS  Google Scholar 

  83. Nakajima K., Okamura M., Kondo J., Domen K., Tatsumi T., Hayashi S., and Hara M.: Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem. Mater. 21, 186 (2009).

    CAS  Google Scholar 

  84. Liu Y., Chen J., Yao J., Lu Y., Zhang L., and Liu X.: Preparation and properties of sulfonated carbon–silica composites from sucrose dispersed on MCM-48. Chem. Eng. J. 148, 201 (2009).

    CAS  Google Scholar 

  85. Van de Vyver S., Peng L., Geboers J., Schepers H., de Clippel F., Gommes C., Goderis B., Jacobs P.A., and Sels B.F.: Sulfonated silica/carbon nanocomposites as novel catalysts for hydrolysis of cellulose to glucose. Green Chem. 12, 1560 (2010).

    Google Scholar 

  86. Cao L., Sahu S., Anilkumar P., Bunker C., Xu J., Shiral Fernando K., Wang P., Guliants E., Tackett K.N., and Sun Y-P.: Carbon nanoparticles as visible-light photocatalysts for efficient CO 2 conversion and beyond. J. Am. Chem. Soc. 133, 4754 (2011).

    CAS  Google Scholar 

  87. Han X., Han Y., Huang H., Zhang H., Zhang X., Liu R., Liu Y., and Kang Z.: Synthesis of carbon quantum dots/SiO 2 porous nanocomposites and their catalytic ability for photo-enhanced hydrocarbon selective oxidation. Dalton Trans. 42, 10380 (2013).

    CAS  Google Scholar 

  88. Zhang H., Ming H., Lian S., Huang H., Li H., Zhang L., Liu Y., Kang Z., and Lee S.T.: Fe2O3/carbon quantum dots complex photocatalysts and their enhanced photocatalytic activity under visible light. Dalton Trans. 40, 10822 (2011).

    CAS  Google Scholar 

  89. Yu H., Zhang H., Li H., Huang H., Liu Y., Ming H., and Kang Z.H.: ZnO/carbon quantum dots nanocomposites: One-step fabrication and superior photocatalytic ability for toxic gas degradation under visible light at room temperature. New J. Chem. 36, 1031 (2012).

    CAS  Google Scholar 

  90. Strelko V., Kuts V.S., and Thrower P.A.: On the mechanism of possible influence of heteroatoms of nitrogen, boron and phosphorus in a carbon matrix on the catalytic activity of carbons in electron transfer reactions. Carbon 38, 1499 (2000).

    CAS  Google Scholar 

  91. Shen J., Zhu Y., Yang X., Zong J., Zhang J., and Li C.: One-pot hydrothermal synthesis of graphene quantum dots surface-passivated by polyethylene glycol and their photoelectric conversion under near-infrared light. New J. Chem. 36, 97 (2012).

    CAS  Google Scholar 

  92. Gupta V., Chaudhary N., Srivastava R., Sharma G., Bhardwaj R., and Chand S.: Luminescent graphene quantum dots for organic photovoltaic devices. J. Am. Chem. Soc. 133, 9960 (2011).

    CAS  Google Scholar 

  93. Huang J., Zhong Z., Rong M., Zhou X., Chen X.D., and Zhang M.Q.: An easy approach of preparing strongly luminescent carbon dots and their polymer based composites for enhancing solar cell efficiency. Carbon 70, 190 (2014).

    CAS  Google Scholar 

  94. Cheng S-H., Weng T-M., Lu M-L., Tan W-C., Chen J-Y., and Chen Y-F.: All carbon-based photodetectors: An eminent integration of graphite quantum dots and two dimensional graphene. Sci. Rep. 3, 2694 (2014).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Kelarakis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelarakis, A. From highly graphitic to amorphous carbon dots: A critical review. MRS Energy & Sustainability 1, 2 (2014). https://doi.org/10.1557/mre.2014.7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2014.7

Keywords

Navigation