Skip to main content

Advertisement

Log in

The rectenna device: From theory to practice (a review)

  • Review
  • Published:
MRS Energy & Sustainability Aims and scope Submit manuscript

Abstract

This review article provides the state-of-art research and developments of the rectenna device and its two main components–the antenna and the rectifier. Furthermore, the history, efficiency trends, and socioeconomic impact of its research are also featured.

The rectenna (RECTifying antENNA), which was first demonstrated by William C. Brown in 1964 as a receiver for microwave power transmission, is now increasingly researched as a means of harvesting solar radiation. Tapping into the growing photovoltaic market, the attraction of the rectenna concept is the potential for devices that, in theory, are not limited in efficiency by the Shockley–Queisser limit. In this review, the history and operation of this 40-year old device concept are explored in the context of power transmission and the ever increasing interest in its potential applications at terahertz frequencies, through the infrared and visible spectra. Recent modeling approaches that have predicted controversially high efficiency values at these frequencies are critically examined. It is proposed that to unlock any of the promised potential in the solar rectenna concept, there is a need for each constituent part to be improved beyond the current best performance, with the existing nanometer scale antennas, the rectification and the impedance matching solutions all falling short of the necessary efficiencies at terahertz frequencies. Advances in the fabrication, characterization, and understanding of the antenna and the rectifier are reviewed, and common solar rectenna design approaches are summarized. Finally, the socioeconomic impact of success in this field is discussed and future work is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

Similar content being viewed by others

References

  1. Shockley W. and Quiesser H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32 (3), 510–519 (1961).

    Article  CAS  Google Scholar 

  2. Henry C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980).

    Article  CAS  Google Scholar 

  3. Corkish R., Greem M.A., and Puzzer T.: Solar energy collection by antennas. Sol. Energy 73 (6), 395–401 (2002).

    Article  Google Scholar 

  4. Goswami D., Vijayaraghavan S., Lu S., and Tamm G.: New and emerging developments in solar energy. Sol. Energy 76, 33–43 (2004).

    Article  CAS  Google Scholar 

  5. Berland B.: Photovoltaic Technologies Beyond the Horizon: Optical Rectenna Solar Cell, subcontractor report; National Renewable Energy Laboratory, 2002. Found online at: http://www.nrel.gov/docs/fy03osti/33263.pdf.

    Google Scholar 

  6. McSpadden J., Fan L., and Chang K.: Design and experiments of a high-conversion-efficiency 5.8-GHz rectenna. IEEE Trans. Microwave Theory Tech. 46 (12), 2053–2060 (1998).

    Article  Google Scholar 

  7. Nahas J.J.: Modeling and computer simulation of a microwave-to-DC energy conversion element. IEEE Trans. Microwave Theory Tech. 2312, 1030–1035 (1975).

    Article  Google Scholar 

  8. Razban T., Bouthinon M., and Coumes A.: Microstrip circuit for converting microwave low power to DC energy. IEE Proc. 132 (2), 107–109 (1985).

    Google Scholar 

  9. Mlinar V.: Engineered nanomaterials for solar energy conversion. Nanotechnology 24, 042001 (2013).

    Article  CAS  Google Scholar 

  10. Moddel G. & Grover S., eds.: Rectenna Solar Cells; Springer: New York, 2013.

    Google Scholar 

  11. Zhu Z., Joshi S., Pelz B., and Moddel G.: Overview of optical rectennas for solar energy harvesting. Proc. SPIE 8824, 882400 (2013).

    Google Scholar 

  12. Bailey R.L.: A proposed new concept for a solar-energy converter. J. Eng. Power 94, 73–77 (1972).

    Article  Google Scholar 

  13. Fletcher J.C. and Bailey R.L.: Electromagnetic wave energy converter. U.S. Patent 3 760 257, 1973.

    Google Scholar 

  14. Brown W.C.: The history of power transmission by radio waves. IEEE Trans. Microwave Theory Tech. 32 (9), 1230–1242 (1984).

    Article  Google Scholar 

  15. Brown W.C.: The microwave powered helicopter. J. Microwave Power 1(1) (Symposium on Microwave Power, University of Alberta, March 24th, 1966).

    Google Scholar 

  16. Kraus J.D.: Antennas, 2nd ed.; McGraw-Hill: New York, 1988.

    Google Scholar 

  17. Miskovsky N., Cutler P., Mayer A., Weiss B., Willis B., Sullivan T.E., and Lerner P.B.: Nanoscale devices for rectification of high frequency radiation from the infrared through the visible: A new approach. J. Nanotechnol, 512379 (2012).

    Google Scholar 

  18. Hertz H.: Dictionary of Scientific Biography, Vol. VI; Scribner: New York, 2007, pp. 340–349.

    Google Scholar 

  19. Okress E., Ed.: Microwave Power Engineering, Vols. I, II; Academic Press: New York, 1968.

    Google Scholar 

  20. George R.H.: Solid state power rectifications. In Microwave Power Engineering, Vol. I; Okress E., ed.; Academic Press: New York, 1968, pp. 275–294.

    Google Scholar 

  21. Brown W., George R., Heenan N.I., and Wonson R.C.: Microwave to dc converter. U.S. Patent 3434678, March 26, 1969.

    Google Scholar 

  22. Glaser P.E.: Power from the sun, its future. Science 162, 857–886 (1968).

    Article  CAS  Google Scholar 

  23. Brown W.C.: Satellite solar power station and microwave transmission to earth. J. Microwave Power 5 (4), (1970).

    Google Scholar 

  24. Brown W.C. and Maynard O.E.: Microwave Power Transmission in the Satellite Solar Power Station System, Raytheon Report ER 72-4038, January 27, 1972.

    Google Scholar 

  25. Brown W.C.: Satellite power stations - A new source of energy? IEEE Spectrum 10 (3), 38–47 (1973).

    Article  Google Scholar 

  26. Glaser P., Maynard O., Macfcovciak J., Jr., and Ralph E.L.: Feasibility Study of a Satellite Solar Power Station; NASA Lewis Research Center: Cleveland, OH, 1974, CR-2357, NTIS N74-N17784.

    Google Scholar 

  27. Glaser P.E.: Method and apparatus for converting solar radiation to electrical power. U.S. Patent 3 781 647, 1973.

    Google Scholar 

  28. Shimokura N., Kaya N., Shinohara N., and Matsumoto H.: Point-to-point microwave power transmission experiment. Trans. Inst. Elect. Eng. Jpn. B 116 (6), 648–653 (1996).

    Google Scholar 

  29. Shinohara N. and Matsumoto H.: Experimental study of large rectenna array for microwave energy transmission. IEEE Trans. Microwave Theory Tech. 46 (3), 261–268 (1998).

    Article  Google Scholar 

  30. Glaser P.E.: An overview of the solar power satellite option. IEEE Trans. Microwave Theory Tech. 40 (6), 1230–1238 (1992).

    Article  Google Scholar 

  31. McSpadden J., Little F., Duke M.B., and Ignatiev A.: An in-space wireless energy transmission experiment. In Proc. IECEC Energy Conversion Engineering Conf. Vol. 1, pp. 468–473 (1996).

    Article  Google Scholar 

  32. Yoo T. and Chang K.: Theoretical and experimental development of 10 and 35 GHz rectennas. IEEE Trans. Microwave Theory Tech. 40, 1259–1266 (1992).

    Article  Google Scholar 

  33. Epp L., Khan A., Smith H.K., and Smith R.P.: A compact dualpolarized 8.51-GHz rectenna for high-voltage (50 V) actuator applications. IEEE Trans. Microwave Theory Tech. 48, 111–120 (2000).

    Article  Google Scholar 

  34. Fujino Y., Ito T., Fujita M., Kaya N., Matsumoto H., Kawabata K., Sawada H., and Onodera T.: A driving test of a small DC motor with a rectenna array. IEICE Trans. Commun. E77-B (4), 526–528 (1994).

    Google Scholar 

  35. Hagerty J., Helmbrecht F., McCalpin W., Zane R., and Popović Z.B.: Recycling ambient microwave energy with broad-band rectenna arrays. IEEE Trans. Microwave Theory Tech. 52 (3), 1014–1024 (2004).

    Article  Google Scholar 

  36. Yang X., Jiang C., Elsherbeni A., Yang F., and Wang Y.Q.: A novel compact printed rectenna for data communication systems. IEEE Trans. Antennas Propag. 61 (5), 2532–2539 (2013).

    Article  Google Scholar 

  37. Bailey R., Callahan P.D., and Zahn M.: Electromagnetic Wave Energy Conversion Research, Final Report, April-30 September. NASA-CR-145876, 1975.

    Google Scholar 

  38. Marks A.M.: Device for conversion of light power to electric power. U.S. Patent 4 445 050, 1984.

    Google Scholar 

  39. Marks A.M.: Ordered dipolar light-electric power converter. U.S. Patent 4 574 161, 1986.

    Google Scholar 

  40. Marks A.M.: Femto diode and applications. U.S. Patent 4 720 642, 1988.

    Google Scholar 

  41. Marks A.M.: Lighting device with quantum electric/light power converters. U.S. Patent 4 972 094, 1990.

    Google Scholar 

  42. Lin G., Abdu R., and Bockris J.O.M.: Investigation of resonance light absorption and rectification by subnanostructures. J. Appl. Phys. 80, 565–568 (1996).

    Article  CAS  Google Scholar 

  43. Gustafson T.K. and Billman K.: Metal-oxide-metal optical diodes. Ames. R.C. Rsch. Review, NASA J. 205–208 (1974).

    Google Scholar 

  44. Strassner B. and Chang K.: Microwave power transmission: Historical milestones and system components. Proc. IEEE 101 (6), 1379–1395 (2013).

    Article  Google Scholar 

  45. Dickinson R.M. and Brown W.C.: Radiated Microwave Power Transmission System Efficiency Measurements, Tech. Memo 33-727; Jet Propulsion Lab., California Inst. Technol.: Pasadena, CA, Mar. 15, 1975.

    Google Scholar 

  46. Konovaltsev A., Luchaninov Y., Omarov M.A., and Shokalo V.M.: Developing wireless energy transfer systems using microwave beams: Applications and prospects. Telecom. Radio Eng. 55 (2), 21–29 (2001).

    Google Scholar 

  47. McSpadden J., Yoo T.W., and Chang K.: Theoretical and experimental investigation of a rectenna element for microwave power transmission. IEEE Trans. Microwave Theory Tech. 40 (12), 2359–2366 (1992).

    Article  Google Scholar 

  48. Brown W.C. and Triner J.F.: Experimental thin-film, etched-circuit rectenna. Microwave Symp. K-4, 185–187 (1982).

    Google Scholar 

  49. Zbitou J., Latrach M., and Toutain S.: Hybrid rectenna and monolithic integrated zero-bias microwave rectifier. IEEE Trans. Microwave Theory Tech. 54 (1), 147–152 (2006).

    Article  Google Scholar 

  50. Takhedmit H., Cirio L., Bellal S., Delcroix D., and Picon O.: Compact and efficient 2.45 GHz circularly polarised shorted ring-slot rectenna. Electron. Lett. 48 (5), 253–254 (2012).

    Article  Google Scholar 

  51. Sun H., Guo Y.-X., and Zhong Z.: A high-sensitivity 2.45 GHz rectenna for low input power energy harvesting. In IEEE Antennas and Propagation Society International Symposium (APSURSI), 2012.

    Google Scholar 

  52. Sun H., Guo Y.-X., He M., and Zhong Z.: Design of a high-efficiency 2.45_-GHz rectenna for low-input-power energy harvesting. IEEE Antennas Wireless Propag. Lett. 11, 929–932 (2012).

    Article  Google Scholar 

  53. Brown W.C. and Kim C.K.: Recent progress in power reception efficiency in a free-space microwave power transmission system. Microwave Symp. Dig. 74 (1), 332–333 (1974).

    Article  Google Scholar 

  54. Gutmann R.J. and Borrego J.M.: Power combining in an array of microwave power rectifiers. IEEE Trans. Microwave Theory Tech. 27 (12), 958–968 (1979).

    Article  Google Scholar 

  55. Heikkinen J. and Kivikoski M.: A novel dual-frequency circularly polarized rectenna. IEEE Antennas Wireless Propag. Lett. 2, 330–333 (2003).

    Article  Google Scholar 

  56. Suh Y.-H. and Chang K.: A high-efficiency dual-frequency rectenna for 2.45_- and 5.8-GHz wireless power transmission. IEEE Trans. Microwave Theory Tech. 50 (7), 1784–1789 (2002).

    Article  Google Scholar 

  57. Ren Y.-J., Farooqui M.F., and Chang K.: A compact dual-frequency rectifying antenna with high-orders harmonic rejection. IEEE Trans. Antennas Propag. 55 (7), 2110–2113 (2007).

    Article  Google Scholar 

  58. Ito T., Fujino Y., and Fujita M.: Fundamental experiment of a rectenna array for microwave power reception, IEICE Trans. Commun. E76-B (12), 1508–1513 (1993).

    Google Scholar 

  59. Park J.-Y., Han S.-M., and Itoh T.: A rectenna design with harmonicrejecting circular-sector antenna. IEEE Antennas Wireless Propag. Lett. 3, 52–54 (2004).

    Article  Google Scholar 

  60. Gao Y.-Y., Yang X.-X., Jiang C., and Zhou J.-Y.: A circularly polarized rectenna with low profile for wireless power transmission. Prog. Electromag. Res. Lett. 13, 41–49 (2010).

    Article  Google Scholar 

  61. McSpadden J., Fan L., and Chang K.: A high-conversion-efficiency 5.8-GHz rectenna. Microwave Symp., IEEE MTT-S Dig. WE2B-6, 547–550 (1997).

    Google Scholar 

  62. Bharj S., Camisa R., Grober S., Wozniak F., and Pendleton E.: High efficiency C-band 1000 element rectenna array for microwave powered application. Microwave Symp., IEEE MTT-S Dig. IF1 G-1, 301–303 (1992).

    Google Scholar 

  63. Suh Y., Wang C., and Chang K.: Circularly polarised truncated-corner square patch microstrip rectenna for wireless power transmission. Electron. Lett. 36 (7), 600–602 (2000).

    Article  Google Scholar 

  64. Strassner B. and Chang K.: Highly efficient C-band circularly polarized rectifying antenna array for wireless microwave power transmission. IEEE Trans. Antennas Propag. 51 (6), 1347–1356 (2003).

    Article  Google Scholar 

  65. Strassner B. and Chang K.: A circularly polarized rectifying antenna array for wireless microwave power transmission with over 78% efficiency. IEEE MTT-S Int. Microwave Symp. Dig. 3, 1535–1538 (2002).

    Google Scholar 

  66. Ali M., Yang G., and Dougal R.: A new circularly polarized rectenna for wireless power transmission and data communication. IEEE Antennas Wireless Propag. Lett. 4, 205–208 (2005).

    Article  Google Scholar 

  67. Ali M., Yang G., and Dougal R.: Miniature circularly polarized rectenna with reduced out-of-band harmonics. IEEE Antennas Wireless Propag. Lett. 5, 107–110 (2006).

    Article  Google Scholar 

  68. Ren Y.-J. and Chang K.: 5.8 GHz broadened beam-width rectifying antennas using non-uniform antenna arrays. In IEEE Antennas and Propagation Society International Symposium, 2006, pp. 867–870.

    Google Scholar 

  69. Yang X.-X., Jiang C., Elsherbeni A., Yang F., and Wang Y.-Q.: A novel compact printed rectenna for communication systems. In Power and Energy Engineering Conference (APPEEC), 2012.

    Google Scholar 

  70. Fujimori K., Tada K., Ueda Y., Sanagi M., and Nogi S.: Development of high efficiency rectification circuit for mW-class rectenna. In IEEE European Microwave Conference, Vol. 2, 2005.

  71. Strassner B. and Chang K.: 5.8-GHz circularly polarized dual-rhombic-loop traveling-wave rectifying antenna for low power-density wireless power transmission application. IEEE Trans. Microwave Theory Tech. 51 (5), 1548–1553 (2003).

    Article  Google Scholar 

  72. Chin C., Xue Q., and Chan C.H.: Design of a 5.8-GHz rectenna incorporating a new patch antenna. IEEE Antennas Wireless Propag. Lett. 4, 175–178 (2005).

    Article  Google Scholar 

  73. Ren Y.-J. and Chang K.: 5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission. IEEE Trans. Microwave Theory Tech. 54 (4), 1495–1502 (2006).

    Article  Google Scholar 

  74. Tu W.-H., Hsu S.-H., and Chang K.: Compact 5.8-GHz rectenna using stepped-impedance dipole antenna. IEEE Antennas Wireless Propag. Lett. 6, 282–284 (2007).

    Article  Google Scholar 

  75. Xuexia Y., Junshu X., Deming X., and Changlong X.: X-band circularly polarized rectennas for microwave power transmission applications. J. Electron. (China) 25 (3), 389–393 (2008).

    Article  Google Scholar 

  76. Monti G., Tarricone L., and Spartano M.: X-band planar rectenna. IEEE Antennas Wireless Propag. Lett. 10, 1116–1119 (2010).

    Article  Google Scholar 

  77. Yoo T.-W. and Chang K.: 35 GHz integrated circuit rectifying antenna with 33% efficiency. Electron. Lett. 27 (23), 2117 (1991).

    Article  Google Scholar 

  78. Hong-Lei D. and Li K.: A novel high-efficiency rectenna for 35GHz wireless power transmission. In 4th Int. Conf. Micr. Mill. Wave Tech. Proc., 2004, pp. 114–117.

    Google Scholar 

  79. Chiou H.-K. and Chen I.-S.: High-efficiency dual-band on-chip rectenna for 35- and 94- GHz wireless power transmission in 0.13-m CMOS technology. IEEE Trans. Microwave Theory Tech. 58 (12), 3598–3606 (2010).

    Google Scholar 

  80. Pinhasi Y., Yakover I., Eichenbaum A.L., and Gover A.: Efficient electrostatic-accelerator free-electron masers for atmospheric power beaming. IEEE Trans. Plasma Sci. 24 (3), 1050–1057 (1996).

    Article  Google Scholar 

  81. Koert P. and Cha J.-T.: Millimeter wave technology for space power beaming. IEEE Trans. Microwave Theory Tech. 40 (6), 1251–1258 (1992).

    Article  Google Scholar 

  82. Ren Y.-J., Li M.-Y., and Chang K.: 35 GHz rectifying antenna for wireless power transmission. Electron. Lett. 43 (11), (2007).

    Google Scholar 

  83. Koert P., Cha J.-T., and Macina M.: 35 and 94 GHz rectifying antenna systems. In Power from Space Dig., Paris, France, Aug. 1991, pp. 541–547.

    Google Scholar 

  84. Brown W.C.: Optimization of the efficiency and other properties of the rectenna element. In Microwave Symp., IEEE MTT-S Int., 1976, pp. 142–144.

    Chapter  Google Scholar 

  85. Brinster I., Lohn J., and Linden D.: An evolved rectenna for sensor networks. In IEEE APSURSI, 2013, pp. 418–419.

    Google Scholar 

  86. Huang F.-J., Lee C.-M., Chang C.-L., Chen L.-K., Yo T.-C., and Luo C.-H.: Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans. Antennas Propag. 59 (7), 2646–2653 (2011).

    Article  Google Scholar 

  87. Brown W.C.: Experiments involving a microwave beam to power and position a helicopter. IEEE Trans. Aerospace Electronics Sys. AES-5 (5), 692–702 (1969).

    Article  Google Scholar 

  88. Corkish R., Green M., Puzzer T., and Humphrey T.: Efficiency of antenna solar collection. In Proc. Photovoltaic Energy Conversion, Vol. 3, 2003, pp. 2682–2685.

    Google Scholar 

  89. NIST: Optical nanoantennas and nanodiodes using atomic layer deposition. (2002). Found online: www.boulder.nist.gov/div814/nanotech/antennas

    Google Scholar 

  90. Balanis C.: Antenna Theory. Analysis and Design, 2nd ed.; Wiley: New York, 1997.

    Google Scholar 

  91. Nunzi J.M.: Requirements for a rectifying antenna solar cell technology. Proc. SPIE 7712, 771204 (2010).

    Article  Google Scholar 

  92. Berland B., Simpson L., Nuebel G., Collins T., and Lanning B.: Optical rectenna for direct conversion of sunlight to electricity. In National Center for Photovoltaics Program Review Meeting, NREL, 2001; p. 323–324.

    Google Scholar 

  93. Mashaal H. and Gordon J.M.: Efficiency limits for the rectification of solar radiation. J. Appl. Phys. 113, 193509 (2013).

    Article  CAS  Google Scholar 

  94. Joshi S. and Moddel G.: Efficiency limits of rectenna solar cells: Theory of broadband photon-assisted tunneling. Appl. Phys. Lett. 102, 083901 (2013).

    Article  CAS  Google Scholar 

  95. Kotter D., Novak S., Slafer W.D., and Pinhero P.: Solar antenna electromagnetic collectors. In 2nd International Conference on Energy Sustainability, August 2008, pp. 10–14.

    Google Scholar 

  96. Briones E., Alda J., and Gonzlez F.J.: Conversion efficiency of broad-band rectennas for solar energy harvesting applications. Opt. Express 21 (S3), A412–A418 (2013).

    Article  CAS  Google Scholar 

  97. Lerner P., Miskovsky N., Cutler P., Mayer A., and Chung M.S.: Thermodynamic analysis of high frequency rectifying devices: Determination of the efficiency and other performance parameters. Nano Energy 2, 368–376 (2013).

    Article  CAS  Google Scholar 

  98. Knight M., Sobhani H., Nordlander P., and Halas N.J.: Photodetection with active optical antennas. Science 332, 702–704 (2011).

    Article  CAS  Google Scholar 

  99. Ma Z. and Vandenbosch G.A.E.: Optimal solar energy harvesting efficiency of nano-rectenna systems. Solar Energy 88, 163–174 (2013).

    Article  CAS  Google Scholar 

  100. Sarehraz M., Buckle K., Weller T., Stefanakos E., Bhansali S., Goswami Y., and Krishnan S.: Rectenna developments for solar energy collection. In Photovoltaic Specialists Conference, 2005, pp. 78–81.

    Google Scholar 

  101. Vandenbosch G.A.E. and Ma Z.: Upper bounds for the solar energy harvesting efficiency of nano-antennas. Nano Energy 1, 494–502 (2012).

    Article  CAS  Google Scholar 

  102. Stefanakos E., Goswami Y., and Bhansali S.: Rectenna solar energy harvester. US Patent 8 115 683, B1, 2012.

    Google Scholar 

  103. Andersen J.B. and Frandsen A.: Absorption efficiency of receiving antennas. IEEE Trans. Antennas Propag. 53 (9), 2843–2849 (2005).

    Article  Google Scholar 

  104. Giovine E., Casini R., Dominijanni D., Notargiacomo A., Ortolani M., and Foglietti V.: Fabrication of Schottky diodes for terahertz imaging. Microelectron. Eng. 88, 2544–2546 (2011).

    Article  CAS  Google Scholar 

  105. Landsberg P.T. and Tonge G.: Thermodynamics of the conversion of diluted radiation. J. Phys. A: Math. Gen. 12 (4), 551–561 (1979).

    Article  Google Scholar 

  106. Sanchez A., Davis C.F. Jr., Liu K.C., and Javan A.: The MOM tunneling diode: Theoretical estimate of its performance at microwave and infra frequencies. J. Appl. Phys. 49, 5270–5277 (1978).

    Article  Google Scholar 

  107. Brillouin L.: Can the rectifier become a thermo-dynamical demon? Phys. Rev. 78, 627 (1950).

    Article  Google Scholar 

  108. Fumeaux C., Herrmann W., Kneubühl F.K., and Rothuizen H.: Nanometer thin-film Ni–NiO–Ni diodes for detection and mixing of 30THz radiation. Infrared Phys. Technol. 39, 123–183 (1998).

    Article  CAS  Google Scholar 

  109. Fumeaux C., Alda J., and Boreman G.D.: Lithographic antennas at visible frequencies. Opt. Lett. 24, 1629 (1999).

    Article  CAS  Google Scholar 

  110. González F.J. and Boreman G.D.: Comparison of dipole, bowtie, spiral and log-periodic IR antennas. Infrared Phys. Technol. 46, 418–428 (2005).

    Article  Google Scholar 

  111. Krishnan S., La Rosa H., Stefanakos E., Bhansali S., and Buckle K.: Design and development of batch fabricatable metal-insulator-metal diode and microstrip slot antenna as rectenna elements. Sens. Actuators, A 142, 40–47 (2008).

    Article  CAS  Google Scholar 

  112. Ren Y.-J. and Chang K.: New 5.8-GHz circularly polarized retrodirective rectenna arrays for wireless power transmission. IEEE Trans. Microwave Theory Tech. 54, 2970–2976 (2006).

    Article  Google Scholar 

  113. Feynman R.P.: There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).

    Google Scholar 

  114. Muhlschlegel P.: Resonant optical antennas. Science 308, 1607–1609 (2005).

    Article  CAS  Google Scholar 

  115. Hecht B., Muhlschlegel P., Farahani J., Eisler H.-J., and Pohl D.W.: Chapter 9–Resonant optical antennas and single emitters. In Tip Enhancement, Elsevier: Amsterdam, 2007, pp. 275–307.

    Chapter  Google Scholar 

  116. Biagioni P., Huang J.-S., and Hecht B.: Nanoantennas for visible and infrared radiation. Rep. Prog. Phys. 75, 024402 (2012).

    Article  Google Scholar 

  117. Jackson J.D.: Classical Electrodynamics, 3rd ed.; John Wiley & Sons: New York, 1998.

    Google Scholar 

  118. Maier S.A.: Plasmonics: Fundamentals and Applications, Springer: New York, 2007.

    Book  Google Scholar 

  119. Kreibig U. and Vollmer M.: Optical Properties of Metal Clusters, Springer: New York, 1995.

    Book  Google Scholar 

  120. Rakic A., Djurišic A., Elazar J.M., and Majewski M.L.: Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl. Opt. 37, 5271 (1998).

    Article  CAS  Google Scholar 

  121. Bohren C.F. and Huffman D.R.: Absorption and Scattering of Light by Small Particles, Wiley: New York, 2008.

    Google Scholar 

  122. Draine B.T. and Flatau P.J.: Discrete-dipole approximation for scattering calculations. J. Opt. Soc. Am. 11, 1491 (1994).

    Article  Google Scholar 

  123. Khoury C., Norton S.J., and Vo-Dinh T.: Plasmonics of 3-D nanoshell dimmers using multipole expansion and finite element method. ACS Nano 3 (9), 2776–2788 (2009).

    Article  CAS  Google Scholar 

  124. Oskooi A., Roundy D., Ibanescu M., Bermel P., Joannopoulos J.D., and Johnson S.G.: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method. Comput. Phys. Commun. 181, 687–702 (2010).

    Article  CAS  Google Scholar 

  125. Centeno A., Alford N., and Xie F.: Predicting the fluorescent enhancement rate by gold and silver nanospheres using finite-difference time-domain analysis. IET Nanobiotechnol. 7, 50–58 (2010).

    Article  CAS  Google Scholar 

  126. Centeno A., Ahmed B., Reehal H., and Xie F.: Diffuse scattering from hemispherical nanoparticles at the air-silicon interface. Nanotechnology 24, 415402 (2013).

    Article  CAS  Google Scholar 

  127. Centeno A., Xie F., Breeze J., and Alford N.: Calculations of scattering and absorption efficiencies of noble metal nanoparticles. In Applied Electromagnetics Conference (AEMC), IEEE, 2011, pp. 1–4.

    Google Scholar 

  128. Fang Z., Liu Z., Wang Y., Ajayan P., Nordlander P., and Halas N.J.: Graphene-antenna sandwich photodetector. Nano Lett. 12, 3808–3813 (2012).

    Article  CAS  Google Scholar 

  129. Goykhman I., Desiatov B., Khurgin J., Shappir J., and Levy U.: Locally oxidized silicon surface-plasmon Schottky detector for telecom regime. Nano Lett. 11, 2219–2224 (2011).

    Article  CAS  Google Scholar 

  130. Mukherjee S., Libisch F., Large N., Neumann O., Brown L., Cheng J., Lassiter J., Carter E., Nordlander P., and Halas N.J.: Hot electrons do the impossible: Plasmon-induced dissociation of H 2 on Au. Nano Lett. 13, 240–247 (2013).

    Article  CAS  Google Scholar 

  131. Wang F. and Melosh N.A.: Plasmonic energy collection through hot carrier extraction. Nano Lett. 11, 5426–5430 (2011).

    Article  CAS  Google Scholar 

  132. Xie F., Pang J., Centeno A., Ryan M., Riley D.J., and Alford N.M.: Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes. Nano Res. 6, 496–510 (2013).

    Article  CAS  Google Scholar 

  133. Bonakdar A., Kohoutek J., Dey D., and Mohseni H.: Optomechanical nanoantenna. Opt. Lett. 37, 3258 (2012).

    Article  Google Scholar 

  134. Grover S., Dmitriyeva O., Estes M.J., and Moddel G.: Travelling-wave metal/insulator/metal diodes for improved infrared bandwidth and efficiency of antenna-coupled rectifiers. IEEE Trans. Nanotech. 9 (6), 716–722 (2010).

    Article  Google Scholar 

  135. Hobbs P.C.D., Laibowitz R.B., and Libsch F.R.: Ni–NiO–Ni tunnel junction for terahertz and infrared detection. Appl. Opt. 44 (32), 6813–6822 (2005).

    Article  CAS  Google Scholar 

  136. Kinzel E., Brown R., Ginn J., Lail B., Slovick B.A., and Boreman G.D.: Design of an MOM diode-coupled frequency-selective surface. Microwave Opt. Technol. Lett. 55, 489–493 (2013).

    Article  Google Scholar 

  137. Reed J., Zhu H., Zhu A., Li C., and Cubukcu E.: Graphene-enabled silver nanoantenna sensors. Nano Lett. 12, 4090–4094 (2012).

    Article  CAS  Google Scholar 

  138. Fang Z., Thongrattanasiri S., Schlather A., Liu Z., Ma L., Wang Y., Ajayan P., Nordlander P., Halas N.J., and de Abajo F.J.G.: Gated tunability and hybridization of localized plasmons in nanostructured graphene. ACS Nano 7, 2388–2395 (2013).

    Article  CAS  Google Scholar 

  139. Greffet J.-J., Laroche M., and Marquier F.: Impedance of a nanoantenna and a single quantum emitter. Phys. Rev. Lett. 105, 117701 (2010).

    Article  CAS  Google Scholar 

  140. Liu N., Wen F., Zhao Y., Wang Y., Nordlander P., Halas N.J., and Alù A.: Individual nanoantennas loaded with three-dimensional optical nanocircuits. Nano Lett. 13, 142–147 (2013).

    Article  CAS  Google Scholar 

  141. Guo L.J.: Nanoimprint lithography methods, and material requirements. Adv. Mater. 19, 495–513 (2007).

    Article  CAS  Google Scholar 

  142. Bergmair I., Dastmalchi B., Bergmair M., Saeed A., Hilber W., Hesser G., Helgert C., Pshenay-Severin E., Pertsch T., Kley E., Hübner U., Shen N., Penciu R., Kafesaki M., Soukoulis C., Hingerl K., Muehlberger M., and Schoeftner R.: Single and multilayer metamaterials fabricated by nanoimprint lithography. Nanotechnology 22, 325301 (2011).

    Article  CAS  Google Scholar 

  143. Xie F., Centeno A., Ryan M., Riley D.J., and Alford N.M.: Au nanostructures by colloidal lithography: From quenching to extensive fluorescence enhancement. J. Mater. Chem. B 1, 536 (2012).

    Article  Google Scholar 

  144. Haynes C.L. and Duyne R.P.V.: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B 105, 5599–5611 (2001).

    Article  CAS  Google Scholar 

  145. Liu X., Choi B., Gozubenli N., and Jiang P.: Periodic arrays of metal nanorings and nanocrescents fabricated by a scalable colloidal templating approach. J. Colloid Interface Sci. 409, 52–58 (2013).

    Article  CAS  Google Scholar 

  146. Hsu C.-M., Connor S., Tang M.X., and Cui Y.: Wafer-scale silicon nanopillars and nanocones by Langmuir-Blodgett assembly and etching. Appl. Phys. Lett. 93, 133109 (2008).

    Article  CAS  Google Scholar 

  147. Zhang X., Elek J., and Chang C.-H.: Three-dimensional nanolithography using light scattering from colloidal particles. ACS Nano 7, 6212–6218 (2013).

    Article  CAS  Google Scholar 

  148. Bharadwaj P., Deutsch B., and Novotny L.: Optical antennas. Adv. Opt. Photonics 1, 438 (2009).

    Article  Google Scholar 

  149. Jennings D., Petersen F.R., and Evenson K.M.: Extension of absolute frequency measurements to 148 THz: Frequencies of 2.0- and 3.5 μ m Xe laser. Appl. Phys. Lett. 26, 510–511 (1975).

    Article  CAS  Google Scholar 

  150. Periasamy P., Berry J., Dameron A., Bergeson J., Ginley D., O’Hayre R.P., and Parilla P.A.: Fabrication and characterisation of MIM diodes based on Nb/Nb2O5 via a rapid screening technique. Adv. Mater. 23, 3080–3085 (2011).

    Article  CAS  Google Scholar 

  151. Periasamy P., Guthrey H., Abdulagatov A., Ndione P., Berry J., Ginley D., George S., Parilla P.A., and O’Hayre R.P.: Metal-insulatormetal diodes: Role of the insulator layer on the rectification performance. Adv. Mater. 25, 1301–1308 (2013).

    Article  CAS  Google Scholar 

  152. Chin M., Periasamy P., O’Regan T., Amani M., Tan C., O’Hayre R., Berry J., Osgood R., Parilla P., Ginley D.S., and Dubey M.: Planar metal-insulator-metal diodes based on the Nb/Nb2O5/X material system. J. Vac. Sci. Technol., B 31 (5), 051204 (2013).

    Google Scholar 

  153. Tucker J.R. and Feldman M.J.: Quantum detection at mm wavelengths. Rev. Mod. Phys. 57 (4), 1055–1114 (1985).

    Article  CAS  Google Scholar 

  154. Tung R.T.: Recent advances in Schottky barrier concepts. Mater. Sci. Eng., R 35, 1–138 (2001).

    Article  Google Scholar 

  155. Pierret R.F.: Semiconductor Device Fundamentals; Addison-Wesley Publishing Company, Inc., 1996.

    Google Scholar 

  156. Sze S.M.: Physics of Semiconductor Devices, 3rd ed.; John Wiley & Sons Inc.: New York, 2007.

    Google Scholar 

  157. Schroder D.K.: Semiconductor Material, and Device Characterization, 3rd ed.; John Wiley & Sons, Inc.: New York, 2006.

    Google Scholar 

  158. Tung R.T.: Electron transport at metal-semiconductor interfaces: General theory. Phys. Rev. B 45, 13509–13523 (1992).

    Article  CAS  Google Scholar 

  159. Gammon P., Donchev E., Pérez-Tomás A., Shah V., Pang J., Petrov P., Jennings M., Fisher C., Mawby P., Leadley D.R., and Alford N.McN.: A study of temperature-related non-linearity at the metal-silicon interface. J. Appl. Phys. 112, 114513 (2012).

    Article  CAS  Google Scholar 

  160. Roccaforte F., La Via F., Raineri V., Pierobon R., and Zanoni E.: Extracting the Richardson constant: IrOx/n-ZnO Schottky diodes. J. Appl. Phys. 93, 9137 (2003).

    Article  CAS  Google Scholar 

  161. Gammon P., Pérez-Tomás A., Shah V., Roberts G., Jennings M., Covington J.A., and Mawby P.A.: Analysis of inhomogeneous Ge/SiC heterojunction diodes. J. Appl. Phys. 106, 093708 (2009).

    Article  CAS  Google Scholar 

  162. Gammon P., Pérez-Tomás A., Jennings M., Shah V., Boden S., Davis M., Burrows S., Wilson N., Roberts G., Covington J.A., and Mowby P.A.: Interface characteristics of n–n and p–n Ge/SiC heterojunction diodes formed by molecular beam epitaxy deposition. J. Appl. Phys. 107, 124512 (2010).

    Article  CAS  Google Scholar 

  163. Gammon P., Pérez-Tomás A., Shah V., Vavasour O., Donchev E., Pang J., Myronov M., Fisher C., Jennings M., Leadley D.R., and Mawby P.A.: Modelling the inhomogeneous SiC Schottky interface. J. Appl. Phys. 114, 223704 (2013).

    Article  CAS  Google Scholar 

  164. Strohm K., Buechler J., and Kasper E.: SIMMWIC rectennas on high-resistivity silicon and CMOS compatibility. IEEE Trans. Microwave Theory Tech. 46 (5), 669–676 (1998).

    Article  Google Scholar 

  165. Sankaran S. and O K.K.: Schottky diode with cutoff frequency of 400 GHz fabricated in 0.18 μ m CMOS. Electron. Lett. 41 (8), 506–508 (2005).

    Article  CAS  Google Scholar 

  166. Sizov F. and Rogalski A.: THz detectors. Prog. Quantum Electron. 34, 278–347 (2010).

    Article  Google Scholar 

  167. Giugni A., Torre B., Toma A., Francardi M., Malerba M., Alabastri A., Proietti Zaccaria R., Stockman M.I., and Di Fabrizio E.: Hot-electron nanoscopy using adiabatic compression of surface plasmons. Nat. Nanotechnol. 8, 845–852 (2013).

    Article  CAS  Google Scholar 

  168. Eliasson B.: Metal-insulator-metal Diodes for Solar Energy Conversion, PhD Thesis at University of Colorado, Boulder, 2001.

    Google Scholar 

  169. Sullivan T., Kuk Y., and Cutler P.H.: Proposed planar scanning tunneling microscope diode: Application as an infrared and optical detector. IEEE Trans. Electron Devices 36 (11), 2659–2664 (1989).

    Article  CAS  Google Scholar 

  170. Grover S., Joshi S., and Moddel G.: Quantum theory of operation for rectenna solar cells. J. Phys. D: Appl. Phys. 46, 135106 (2013).

    Article  CAS  Google Scholar 

  171. Alimardani N., McGlone J., Wager J.F., and Conley J.F. Jr: Conduction processes in metal-insulator-metal diodes with Ta2O5 and Nb2OP5 insulators deposited by atomic layer deposition. J. Vac. Sci. Technol., A 32 (1), 01A122 (2014).

    Google Scholar 

  172. Fowler R.H. and Nordheim L.: Electron emission in intense electric fields. Proc. R. Soc. Lond. A 119, 173–181 (1928).

    Article  CAS  Google Scholar 

  173. Grover S. and Moddel G.: Applicability of metal/insulator/metal (MIM) diodes to solar rectennas. IEEE J. Photovolt. 1 (1), 78–83 (2011).

    Article  Google Scholar 

  174. Kadlec J. and Gundlach K.H.: Dependence of the barrier height on insulator thickness in Al-(Al-Oxide)-Al sandwiches. Solid State Commun. 16, 621–623 (1975).

    Article  CAS  Google Scholar 

  175. Heiblum M., Wang S., Whinnery J.R., and Gustafson T.K.: Characteristics of integrated MOM junctions at dc and at optical frequencies. IEEE J. Quantum Electron. QE-14 (3), 159–169 (1978).

    Article  Google Scholar 

  176. Wilke I., Oppliger Y., Herrmann W., and Kneubühl F.K.: Nanometer thin-film Ni-NiO–Ni diodes for 30 THz radiation. Appl. Phys. A 58, 329–341 (1994).

    Article  Google Scholar 

  177. Abdel-Rahman M., González F.J., and Boreman G.D.: Antenna-coupled metal-oxide-metal diodes for dual-band detection at 92.5 GHz and 28 THz. Electron. Lett. 40 (2), (2004).

    Google Scholar 

  178. Choi K., Yesilkoy F., Ryu G., Cho S., Goldsman N., Dagenais M., and Peckerar M.: A focused asymmetric metal-insulator-metal tunneling diode: Fabrication, DC characteristics and RF rectification analysis. IEEE Trans. Electron Devices 58 (10), 3519–3528 (2010).

    Article  CAS  Google Scholar 

  179. Gloos K., Koppinen P.J., and Pekola J.P.: Properties of native ultrathin aluminium oxide tunnel barriers. J. Phys.: Condens. Matter 15, 1733–1746 (2003).

    CAS  Google Scholar 

  180. Periasamy P., Bergeson J., Parilla P., Ginley D.S., and O’Hayre R.P.: Metal-insulator-metal point-contact diodes as a rectifier for rectenna. PVSC 25, 2943–2945 (2010).

    Google Scholar 

  181. Hoofring A., Kapoor V.J., and Krawczonek W.: Submicron nickel-oxide-gold tunnel diode detectors for rectennas. J. Appl. Phys. 66(1), 430–437 (1989).

    Article  CAS  Google Scholar 

  182. Krishnan S., Stefanakos E., and Bhansali S.: Effects of dielectric thickness and contact area on current-voltage characteristics of thin film metalinsulator- metal diodes. Thin Solid Films 516, 2244–2250 (2008).

    Article  CAS  Google Scholar 

  183. Esfandiari P., Bernstein G., Fay P., Porod W., Rakos B., Zarandy A., Berland B., Boloni L., Boreman G., Lail B., Monacelli B., and Weeks A.: Tunable antenna-coupled metaloxidemetal (MOM) uncooled IR detector (invited paper). Proc. SPIE 5783, 470482 (2005).

    Google Scholar 

  184. Gustafson T., Schmidt R.V., and Perucca J.R.: Optical detection in thin-film metal-oxide-metal diodes. Appl. Phys. Lett. 24 (12), 620–622 (1974).

    Article  CAS  Google Scholar 

  185. Periasamy P., O’Hayre R., Berry J., Parilla P., Ginley D.S., and Packard C.E.: A novel way to characterize metal-insulator-metal devices via nanoindentation. PVSC 37 (2011). Retrieved from: http://www.nrel.gov/docs/fy11osti/50727.pdf.

  186. Cowell E.W. III, Alimardani N., Knutson C., Conley J.F. Jr., Keszler D., Gibbons B.J., and Wager J.F.: Advancing MIM electronics: Amorphous metal electrodes. Adv. Mater. 23, 74–78 (2011).

    Article  CAS  Google Scholar 

  187. Grossman E., Harvey T.E., and Reintsema C.D.: Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes. J. Appl. Phys. 91 (12), 10134–10139 (2002).

    Article  CAS  Google Scholar 

  188. Alimardani N., Cowell E.W. III, Conley J.F. Jr., Evans D., Chin M., Kilpatrick S.J., and Dubey M.: Impact of electrode roughness on metal-insulator-metal tunnel diodes with atomic layer deposited Al2O3 tunnel barriers. J. Vac. Sci. Technol., A 30 (1), 01A113 (2012).

    Google Scholar 

  189. Tiwari B., Bean J., Szakmány G., Bernstein G., Fay P., and Porod W.: Controlled etching and regrowth of tunnel oxide for antenna-coupled metal-oxide-metal diodes. J. Vac. Sci. Technol., B 27 (5), 2153–2160 (2009).

    Article  CAS  Google Scholar 

  190. Periasamy P., Bradley M., Parilla P., Berry J., Ginley D., O’Hayre R.P., and Packard C.E.: Electromechanical tuning of nanoscale MIM diodes by nanoindentation. J. Mater. Res. 28 (14), 1912–1919 (2013).

    Article  CAS  Google Scholar 

  191. Simmons J.G.: Electric tunnel effect between dissimilar electrodes separated by a thin insulating film. J. Appl. Phys. 34, 2581–2590 (1963).

    Article  Google Scholar 

  192. Hashem I., Rafat N.H., and Soliman E.A.: Theoretical study of metal-insulator-metal tunneling diode figures of merit. IEEE J. Quantum Electron. 49 (1), 72–79 (2013).

    Article  CAS  Google Scholar 

  193. Choi K., Yesilkoy F., Chryssis A., Dagenais M., and Peckerar M.: New process development for planar-type CIC tunneling diodes. IEEE Electron Device Lett. 31 (8), 809–811 (2010).

    Article  CAS  Google Scholar 

  194. Cowell E.W. III, Muir S., Keszler D.A., and Wager J.F.: Barrier height estimation of asymmetric metal-insulator-metal tunneling diodes. J. Appl. Phys. 114, 213703 (2013).

    Article  CAS  Google Scholar 

  195. McMitchell S.R.C., Tse Y., Bouyanfif H., Jackson T., Jones I.P., and Lancaster M.J.: Two-dimensional growth of SrTiO 3 thin films on (001) MgO substrates using pulsed laser deposition and reflection high energy electron diffraction. Appl. Phys. Lett. 95, 174102 (2009).

    Article  CAS  Google Scholar 

  196. Palgrave R., Borisov P., Dyer M., McMitchell S.R.C., Darling G., Claridge J., Batuk M., Tan H., Tian H., Verbeeck J., Handermann J., and Rosseinsky M.J.: Artificial construction of the layered Ruddlesden-Popper manganite La 2 Sr2Mn3O10 by reflection high energy electron diffraction monitored pulsed laser deposition. J. Am. Chem. Soc. 134, 7700–7714 (2012).

    Article  CAS  Google Scholar 

  197. Gupta R. and Willis B.G.: Nanometer spaced electrodes using selective area atomic layer deposition. Appl. Phys. Lett. 90, 253102 (2007).

    Article  CAS  Google Scholar 

  198. Bareib M., Ante F., Kälblein D., Jegert G., Jirauschek C., Scarpa G., Fabel B., Nelson E., Timp G., Zschieschang U., Klauk H., Porod W., and Lugli P.: High-yield printing of metal-insulator-metal nanodiodes. ACS Nano 6 (2), 2853–2859 (2012).

    Google Scholar 

  199. Moddel G. and Eliasson B.J.: High speed electron tunneling device and applications. US Patent No. 6756649B2, 2004.

    Google Scholar 

  200. Grover S. and Moddel G.: Engineering the current-voltage characteristics of metal-insulator-metal diodes using double-insulator barriers. Solid-State Electron. 67, 94–99 (2012).

    Article  CAS  Google Scholar 

  201. Di Ventra M., Papp G., Coluzza C., Baldereschi A., and Schulz P.A.: Indented barrier resonant tunneling rectifiers. J. Appl. Phys. 80, 4174–4176 (1996).

    Article  Google Scholar 

  202. Eliasson B.J. and Moddel G.: Metal-oxide electron tunneling device for solar energy conversion. US Patent 6534784B2, 2003.

    Google Scholar 

  203. Hegyi B., Csurgay A., and Porod W.: Investigation of the nonlinearity properties of the DC I-V characteristics of metal-insulator-metal (MIM) tunnel diodes with double-layer insulators. J. Comput. Electron. 6, 159–162 (2007).

    Article  CAS  Google Scholar 

  204. Maraghechi P., Foroughi-Abari A., Cadien K., and Elezzabi A.Y.: Enhanced rectifying response from metal-insulator-insulator-metal junctions. Appl. Phys. Lett. 99, 253503 (2011).

    Article  CAS  Google Scholar 

  205. Alimardani N., Cowell E., Wager J.F., and Conley, J.F., Jr.: Fabrication and investigation of metal-insulator-insulator-metal (MIIM) tunnel diodes using atomic layer deposition. In 221st ECS Meeting, 2012.

    Google Scholar 

  206. Alimardani N.: Investigation of metal-insulator-metal (MIM) and nanolaminate barrier MIIM tunnel devices fabricated via atomic layer deposition, Ph.D. Thesis, Oregon State University, 2013.

    Google Scholar 

  207. Alimardani N. and Conley J., Jr.: Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 102, 143501 (2013).

    Article  CAS  Google Scholar 

  208. Sekar D., Kumar T., Rabkin P., and Costa X.C.: MIIIM diode having Lanthanum oxide. US Patent 2013/0181181, 2013.

    Google Scholar 

  209. Moddel G.: Geometric diode, applications, and method. US Patent 20110017284_A1, 2011.

    Google Scholar 

  210. Zhu Z., Joshi S., Grover S., and Moddel G.: Graphene geometric diodes for terahertz rectennas. J. Phys. D: Appl. Phys. 46, 185101 (2013).

    Article  CAS  Google Scholar 

  211. Zhu Z., Grover S., Krueger K., and Moddel G.: Optical rectenna solar cells using grapheme geometric diodes. PVSC 37, 2120–2122 (2011).

    Google Scholar 

  212. Joshi S., Zhu Z., Grover S., and Moddel G.: Infrared optical response of geometric diode rectenna solar cells. PVSC 38, 2976–2978 (2012).

    Google Scholar 

  213. Moddel G., Zhu Z., Grover S., and Joshi S.: Ultrahigh speed graphene diode with reversible polarity. Solid State Commun. 152, 1842–1845 (2012).

    Article  CAS  Google Scholar 

  214. Grover S.: Diodes for optical rectennas, PhD Thesis at University of Colorado, Boulder, 2011.

    Google Scholar 

  215. Ashcroft N.M. and Mermin N.D.: Solid State Physics; Harcourt College Publishers: Orlando, 1976.

    Google Scholar 

  216. Castro Neto A., Guinea F., Peres N.M.R., Novoselov K.S., and Geim A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    Article  CAS  Google Scholar 

  217. Fukuda M., Aihara T., Yamaguchi K., Ling Y., Miyaji K., and Tohyama M.: Light detection enhanced by surface plasmon resonance in metal film. Appl. Phys. Lett. 96, 153107 (2010).

    Article  CAS  Google Scholar 

  218. Ishi T., Fujikata J., Makita K., Baba T., and K. Ohashi: Si nano-photodiode with a surface plasmon antenna. Jpn. J. Appl. Phys. 44 (2), L364–L366 (2005).

    Article  CAS  Google Scholar 

  219. Satoh H. and Inokawa H.: Surface plasmon antenna with gold line and space grating for enhanced visible light detection by a silicon-on-insulator metal-oxide-semiconductor photodiode. IEEE Trans. Nanotechnol. 11 (2), 346–351 (2012).

    Article  Google Scholar 

  220. Bareib M., Tiwari B., Hochmeister A., Jegert G., Zschieschang U., Klauk H., Fabel B., Scarpa G., Koblmüller G., Bernstein G., Porod W., and Lugli P.: Nano antenna array for terahertz detection. IEEE Trans. Microwave Theory Trans. 59 (10), 2751–2757 (2011).

    Article  CAS  Google Scholar 

  221. Codreanu I., González F.J., and Boreman G.D.: Detection mechanisms in microstrip dipole antenna-coupled infrared detectors. Infrared Phys. Technol. 44, 155–163 (2003).

    Article  CAS  Google Scholar 

  222. Enderra I., Gonzalo R., Martinez B., Alderman B.E.J., Huggard P., Murk A., Marchand L., and de Maagt P.: Design and test of a 0.5 THz dipole antenna with integrated Schottky diode detector on a high dielectric constant ceramic electromagnetic bandgap substrate. IEEE Trans. Terahertz Sci. Technol. 3 (3), 584–593 (2013).

    Article  Google Scholar 

  223. Clavero C.: Plasmon-induced hot-electron generation at nanoparticle/ metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photonics 8, 95–103 (2014).

    Article  CAS  Google Scholar 

  224. The World Bank (2013). Energy - The Facts. Retrieved from: http://go.worldbank.org/6ITD8WA1A0.

    Google Scholar 

  225. Fraunhofer ISE (Press Release 23 Sep. 2013): World Record Solar Cell with 44.7% Efficiency. Retrieved from: http://www.ise.fraunhofer. de/en/press-and-media/press-releases/presseinformationen-2013/ world-record-solar-cell-with-44.7-efficiency.

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by EPSRC grant number EP/G060940/1. Peter M. Gammon would like to gratefully acknowledge the financial support from the Royal Academy of Engineering. Jing S. Pang and Peter K. Petrov acknowledge the financial support under the King Abdullah University for Science and Technology (KAUST), Global Collaborative Research Academic Excellence Alliance (AEA), and Academic Partnership Programs (APP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgeniy Donchev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donchev, E., Pang, J.S., Gammon, P.M. et al. The rectenna device: From theory to practice (a review). MRS Energy & Sustainability 1, 1 (2014). https://doi.org/10.1557/mre.2014.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1557/mre.2014.6

Keywords

Navigation