Skip to main content
Log in

An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple

  • Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

By solving the problems in the previous pragmatic method [Scr. Mater. 90-91, 53-56 (2014)] and including the interdiffusion flux as the criteria, an augmented numerical inverse method was proposed and realized in a house-made code. The proposed augmented numerical inverse method was successfully applied to high-throughput determination of the composition-dependent interdiffusivities in different solid solution alloys ranging from binary, ternary to multicomponent systems by using a single diffusion couple. Moreover, the advance features of the augmented numerical inverse method were also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. M.A. Dayananda and Y.H. Sohn: A new analysis for the determination of ternary interdiffusion coefficients from a single diffusion couple. Metall. Mater. Trans. A 30, 535 (1999).

    Article  Google Scholar 

  2. R. Bouchet and R. Mevrel: A numerical inverse method for calculating the interdiffusion coefficients along a diffusion path in ternary systems. Acta Mater. 50, 4887 (2002).

    Article  CAS  Google Scholar 

  3. A.V. Jaques and J.C. LaCombe: A stable and efficient regression approach for determination of coefficients in linear multicomponent diffusion. J. Phase Equilib. Diffus. 33, 181 (2012).

    Article  CAS  Google Scholar 

  4. J.E. Morral and W.D. Hopfe: Validation of multicomponent diffusivities using one diffusion couple. J. Phase Equilib. Diffus. 35, 666 (2014).

    Article  CAS  Google Scholar 

  5. S. Santra and A. Paul: Estimation of intrinsic diffusion coefficients in a pseudo-binary diffusion couple. Scr. Mater. 103, 18 (2015).

    Article  CAS  Google Scholar 

  6. I.V. Belova, Y.H. Sohn, and G.E. Murch: Measurement of tracer diffusion coefficients in an interdiffusion context for multicomponent alloys. Philos. Mag. Lett. 95, 416 (2015).

    Article  CAS  Google Scholar 

  7. L. Kaufman and J. Ågren: CALPHAD, first and second generation-birth of the materials. Scr. Mater. 70, 3 (2014).

    Article  CAS  Google Scholar 

  8. G.B. Olson and C.J. Kuehmann: Materials genomics: from CALPHAD to flight. Scr. Mater. 70, 25 (2014).

    Article  CAS  Google Scholar 

  9. G. Gottstein: Integral Materials Modeling: Towards Physics-Based Through-Process Models (Wiley-VCH Verlag GmBH&Co. KGaA, Germany, 2007).

    Book  Google Scholar 

  10. W. Chen, L. Zhang, Y. Du, B. Huang, and C. Tang: A pragmatic method to determine the composition-dependent interdiffusivities in ternary systems by using a single diffusion couple. Scr. Mater. 90-91, 53 (2014).

    Article  Google Scholar 

  11. H. Xu, W. Chen, L. Zhang, Y. Du, and C. Tang: High-throughput determination of the composition-dependent interdiffusivities in Cu-rich fcc Cu-Ag-Sn alloys at 1073 K. J. Alloys Compd. 644, 687 (2015).

    Article  CAS  Google Scholar 

  12. J.S. Kirkaldy and D.J. Young: Diffusion in the Condensed State (The Institute of Metals, London, 1987).

    Google Scholar 

  13. J.R. Manning: Diffusion and the Kirkendall shift in binary alloys. Acta Metall. 15, 817 (1967).

    Article  CAS  Google Scholar 

  14. W. Chen, L. Zhang, Y. Du, and B. Huang: Viscosity and diffusivity in melts: from unary to multicomponent systems. Philos. Mag. 94, 1552 (2014).

    Article  CAS  Google Scholar 

  15. M.A. Dayananda: An analysis of concentration profiles for fluxes, diffusion depths, and zero-flux planes in multicomponent diffusion. Metall. Trans. A 114, 1851 (1983).

    Article  Google Scholar 

  16. A. Ben Abdellah, J.G. Gasser, K. Bouziane, B. Grosdidier, and M. Busaidi: Experimental procedure to determine the interdiffusion coefficient of mis-cibility gap liquid alloys: case of GaPb system. Phys. Rev. 676, 174203 (2007).

    Article  Google Scholar 

  17. J. Lechelle, S. Noyau, L. Aufore, A. Arredondo, and E. Audubert: Volume interdiffusion coefficient and uncertainty assessment for polycrystalline materials. Diffus.-Fundamentals.org. 17, 1 (2012).

    Google Scholar 

  18. J. Chen, C. Zhang, J. Wang, W. Chen, Y. Tang, L. Zhang, and Y. Du: Thermodynamic description, diffusivities and atomic mobilities in binary Ni-Os system. CALPHAD 50, 118 (2015).

    Article  CAS  Google Scholar 

  19. W. Zhang: Thermodynamics and kinetic analysis of the formation of microstructure in multi-component graded cemented carbides and its experimental investigation. Ph.D. Thesis, Central South University, Changsha, 2015.

    Google Scholar 

Download references

Acknowledgments

The financial support from the National Natural Science Foundation of China (Grant No. 51474239), National Natural Science Foundation for Youth of China (Grant No. 51301208) and the Hunan Provincial Natural Science Foundation for Youth of China (Grant No. 2015JJ3146) is acknowledged. Lijun Zhang acknowledges financial support from the project supported by State Key Laboratory of Powder Metallurgy Foundation, Central South University, Changsha, China. Weimin Chen acknowledges support by the outstanding graduate project of Advanced Non-ferrous Metal Structural Materials and Manufacturing Collaborative Innovation Center, Changsha, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Zhang.

Supplementary material

Supplementary material

The supplementary materia for this article can be found at {rs|http://dx.doi.org/10.1557/mrc.2016.21|url|}.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhong, J. & Zhang, L. An augmented numerical inverse method for determining the composition-dependent interdiffusivities in alloy systems by using a single diffusion couple. MRS Communications 6, 295–300 (2016). https://doi.org/10.1557/mrc.2016.21

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2016.21

Navigation