Skip to main content
Log in

Low-loss silicon wire waveguides for optical integrated circuits

  • Plasmonics, Photonics, and Metamaterials Research Letter
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Low-propagation-loss silicon wire waveguides are key components of optical integrated circuits. In this paper, we clarified, through assessment of the relationship between waveguide loss and fabrication technology that high-resolution lithography and an adjusted lithography process window are important for low-loss waveguides. The silicon wire waveguides fabricated by high-resolution lithography technology using ArF immersion lithography process showed world-record low propagation losses of au]0._40 dB/cm for the C-band and au]1._28 dB/cm for the O-band. Analysis with Barwicz and Haus’s theory indicated that sidewall scattering is the main cause of propagation loss even in such low-loss waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Table I
Table II
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y.A. Vlasov: Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G. lEEE Commun. Mag. 50, s67 (2012).

    Article  Google Scholar 

  2. M. Zuffada: The industrialization of the Silicon Photonics: Technology roadmap and application (Proc. European Solid-State Device Res. Conf., Milan, Italy, 2012) p. 7.

    Google Scholar 

  3. Y. Arakawa, T. Nakamura, Y. Urino, and T. Fujita: Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51, 72 (2013).

    Article  Google Scholar 

  4. F. Boeuf, S. Cremer, N. Vulliet, T. Pinguet, A. Mekis, G. Masini, L. Verslegers, P. Sun, A. Ayazi, N.-K. Hon, S. Sahni, Y. Chi, B. Orlando, D. Ristoiu, A. Farcy, F. Leverd, L. Broussous, D. Pelissier-Tanon, C. Richard, L. Pinzelli, R. Beneyton, O. Gourhant, E. Gourvest, Y. Le-Friec, D. Monnier, P. Brun, M. Guillermet, D. Benoit, K. Haxaire, J.R. Manouvrier, S. Jan, H. Petiton, J.F. Carpentier, T. Quemerais, C. Durand, D. Gloria, M. Fourel, F. Battegay, Y. Sanchez, E. Batail, F. Baron, P. Delpech, L. Salager, P. De Dobbelaere, and B. Sautreuil: A multi-wavelength 3D-compatible silicon photonics platform on 300 mm SOI wafers for 25Gb/s applications (IEEE Int. Electron Devices Meet., Washington, DC, USA, 2013) p. 353.

    Google Scholar 

  5. Y. Urino, N. Hatori, K. Mizutani, T. Usuki, J. Fujikata, K. Yamada, T. Horikawa, T. Nakamura, and Y. Arakawa: First demonstration of athe-rmal silicon optical interposers with quantum dot lasers operating up to 125°C. J. Lightwave Technol. 33, 1223 (2014).

    Article  Google Scholar 

  6. Y.A. Vlasov and S.J. McNab: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12, 1622 (2004).

    Article  Google Scholar 

  7. R. Orobtchouk, N. Schell, T. Benyattou, and J.M. Fedeli: Compact building block for optical link on SOI technology (European Conf. Integrated Opt., Grenoble, France, 2005).

    Google Scholar 

  8. D.K. Sparacin, S.J. Spector, and L.C. Kimerling: silicon waveguide side-wall smoothing by wet chemical oxidation. J. Lightwave Technol. 23, 2455 (2005).

    Article  CAS  Google Scholar 

  9. W. Bogaerts, R. Baets, P. Dumon, V. Wiaux, S. Beckx, D. Taillaert, B. Luyssaert, J. Van Campenhout, P. Bienstman, and D. Van Thourhout: Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J. Lightwave Technol. 23, 401 (2005).

    Article  CAS  Google Scholar 

  10. T. Tsuchizawa, Y. Yamada, H. Fukuda, T. Watanabe, J. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S. Itabashi, and H. Morita: Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232 (2005).

    Article  CAS  Google Scholar 

  11. F. Xia, L. Sekaric, and Y. Vlasov: Ultracompact optical buffers on a silicon chip. Nat. Photonics 1, 65 (2007).

    Article  CAS  Google Scholar 

  12. M. Gnan, S. Thorns, D.S. Macintyre, R.M. De La Rue, and M. Sorel: Fabrication of low-loss photonic wires in silicon-on-insulator using hydrogen silsesquioxane electron-beam resist. Electron. Lett. 44, 115 (2008).

    Article  CAS  Google Scholar 

  13. T. Tsuchizawa, K. Yamada, T. Watanabe, H. Fukuda, H. Nishi, H. Shinojima, and S. Itabashi: Si photonics platform and its fabrication (Int. Symp. on Adv. Sci. Technol. Silicon Mat., Hawaii, USA, 2008).

    Google Scholar 

  14. W. Bogaerts, S.K. Selvaraja, P. Dumon, J. Brouckaert, K. De Vos, D. Van Thourhout, and R. Baerts: Silicon-on-insulator spectral filters fabricated with CMOS technology. IEEE J. Sel. Top. Quantum Electron. 16, 33 (2010).

    Article  CAS  Google Scholar 

  15. S.K. Selvaraja, G. Murdoch, A. Milein, C. Delvaux, P. Ong, S. Pathak, D. Vermeulen, G. Sterckx, G. Winroth, P. Verheyen, G. Lepage, W. Bogaerts, R. Baerts, J. Van Campenhout, and P. Absil: Advanced 300-mm waferscale patterning for silicon photonics devices with record low loss and phase errors (Opto-Electron. Commun. Conf., Busan, Korea, 2012) p. 15.

    Google Scholar 

  16. N. Hirayama, H. Takahashi, Y. Noguchi, M. Yamagishi, and T. Horikawa: Low-loss Si waveguides with variable-shaped-beam EB lithography for large-scaled photonic circuits (Int. Conf. on Solid State Devices Mat., Kyoto, Japan, 2012) p. 530.

    Google Scholar 

  17. T. Horikawa, H. Takahashi, M. Seki, and T. Nakamura: Silicon photonic integration by using variable-shaped-beam EB lithography and immersion ArF lithography (Int. Symp. on Photonics Electron. Convergence, Tokyo, Japan, 2012) p. 12.

    Google Scholar 

  18. H. Takahashi, M. Toyama, M. Seki, D. Shimura, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, E. Ishitsuka, T. Sano, and T. Horikawa: The impacts of ArF excimer immersion lithography on integrated silicon photonics technology (Int. Conf. on Solid State Devices Mat., Kyoto, Japan, 2012) p. 528.

    Google Scholar 

  19. S.K. Selvaraja, P. De Heyn, G. Winroth, P. Ong, G. Lepage, C. Cailler, A. Rigny, K.K. Bourdelle, W. Bogaerts, D. Van Thourhout, J. Van Campenhout, and P. Absil: Highly uniform and low-loss passive silicon photonics devices using a 300 mm CMOS platform (OFC 2014, San Francisco, USA, 2014), Th2A.33.

    Google Scholar 

  20. D. Shimura, T. Horikawa, H. Okayama, S.-H. Jeong, M. Tokushima, H. Sasaki, and T. Mogami: High precision Si waveguide devices designed for. au]1._31 μm and 1.55 μm wavelengths on 300 mm-SOl (IEEE Int. Conf. on Group IV Photonics, Paris, France, 2014) p. 31.

    Google Scholar 

  21. S. Lardenois, D. Pascal, L. Vivien, E. Cassan, S. Laval, R. Orobtchouk, M. Helzmann, N. Bouzzalda, and L. Mollard: Low-loss submicrometer silicon-on-insulator rib waveguides and corner mirrors. Opt. Lett. 28, 1150 (2003).

    Article  CAS  Google Scholar 

  22. F.P. Payne and J.P.R. Lacey: A theoretical analysis of scattering loss from planar optical waveguides. Opt. Quantum Electron. 26, 977 (1994).

    Article  CAS  Google Scholar 

  23. T. Barwicz and H.A. Haus: Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides. J. Lightwave Technol. 23, 2719 (2005).

    Article  Google Scholar 

  24. A. Novack, M. Streshisky, R. Ding, Y. Liu, A.E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hockberg: Progress in silicon platforms for integrated optics. Nanophotonics 3, 205 (2014).

    Article  CAS  Google Scholar 

  25. T. Horikawa and T. Mogami: Ultra-fine Si photonics fabrication technology based on 40-nm-node CMOS process (IEEE Int. Conf. on Group IV Photonics, Vancouver, Canada, 2015) p. 201.

    Google Scholar 

  26. T. Horikawa, M. Seki, M. Toyama, K. Koshino, N. Yokoyama, M. Ohtsuka, A. Sugiyama, E. Ishitsuka, M. Yamagishi, and T. Sano: SOI waveguide process(VI) - Waveguide pattern formed by ArF immersion lithography (II) - (IEICE Electron. Conf., Toyama, Japan, 2012) p. 174 [in Japanese].

    Google Scholar 

  27. T. Horikawa, D. Shimura, S.-H. Jeong, M. Tokushima, K. Kinoshita, and T. Mogami: The impacts of fabrication error in Si wire-waveguides on spectral variation of coupled resonator optical waveguides. Microelectron. Eng. in press doi: 10.1016/j.mee. 2015. 11.015.

    Google Scholar 

  28. T. Barwicz and H.I. Smith: Evolution of line edge roughness during fabrication of high-index-contrast microphotonic devices. J. Vac. Sci. Technol. B. 21, 2892 (2003).

    Article  CAS  Google Scholar 

  29. T. Barwicz, C.W. Holzwarth, P.T. Rakich, M.A. Popovic, E.P. Ippen, and H.I. Smith: Optical loss in silicon microphotonic waveguides induces by metallic contamination. Appl. Phys. Lett. 92, 131108 (2008).

    Article  Google Scholar 

  30. K. Kinoshita, T. Horikawa, D. Shimura, H. Takahashi, and T. Mogami: Study of 03-TEOS SiO2 Cladding for Silicon Photonics Devices (GEC/ ICRP/SPP, Honolulu, USA, 2015), NR2.00002.

    Google Scholar 

  31. D.K. Sparacin: Process and design techniques for low loss integrated silicon photonics. PhD thesis, MIT, 2006, pp. 84–106.

    Google Scholar 

Download references

Acknowledgments

This research was partly supported by the New Energy and Industrial Technology Development Organization (NEDO). The authors thank Mr. M. Seki, National Institute of Advanced Industrial Science and Technology (AIST), for his valuable information and discussion about ArF immersion lithography technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Horikawa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horikawa, T., Shimura, D. & Mogami, T. Low-loss silicon wire waveguides for optical integrated circuits. MRS Communications 6, 9–15 (2016). https://doi.org/10.1557/mrc.2015.84

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.84

Navigation