Skip to main content

Advertisement

Log in

Engineering semiconducting polymers for efficient charge transport

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Electronic performance in semiconducting polymers has improved dramatically in recent years owing to a host of novel materials and processing techniques. Our understanding of the factors governing charge transport in these materials has also been enhanced through advancements in both experimental and computational techniques, with disorder appearing to play a central role. In this prospective, we propose that disorder is an inextricable aspect of polymer morphology which need not be highly detrimental to charge transport if it is embraced and planned for. We discuss emerging guidelines for the synthesis of polymers which are resilient to disorder and present our vision for how future advances in processing and molecular design will provide a path toward further increases in charge-carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. C.-C. Chen, W.-H. Chang, K. Yoshimura, K. Ohya, J. You, J. Gao, Z. Hong, and Y. Yang: An efficient triple-junction polymer solar cell having a power conversion efficiency exceeding 11%. Adv. Mater. 26, 5670–5677 (2014).

    Article  CAS  Google Scholar 

  2. O. Knopfmacher, M.L. Hammock, A.L. Appleton, G. Schwartz, J. Mei, T. Lei, J. Pei, and Z. Bao: Highly stable organic polymer field-effect transistor sensor for selective detection in the marine environment. Nat. Commun. 5, (2014).

  3. M. Kaltenbrunner, T. Sekitani, J. Reeder, T. Yokota, K. Kuribara, T. Tokuhara, M. Drack, R. Schwödiauer, I. Graz, S. Bauer-Gogonea, S. Bauer, and T. Someya: An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    Article  CAS  Google Scholar 

  4. M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A.M. Egbe, M.C. Miron, Z. Major, M.C. Scharber, T. Sekitani, T. Someya, S. Bauer, and N.S. Sariciftci: Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013).

    Article  CAS  Google Scholar 

  5. H.-J. Yun, S.-J. Kang, Y. Xu, S.O. Kim, Y.-H. Kim, Y.-Y. Noh, and S.-K. Kwon: Dramatic inversion of charge polarity in diketopyrrolopyrrole-based organic field-effect transistors via a simple nitrile group substitution. Adv. Mater. 26, 7300–7307 (2014).

    Article  CAS  Google Scholar 

  6. G. Kim, S.-J. Kang, G.K. Dutta, Y.-K. Han, T.J. Shin, Y.-Y. Noh, and C. Yang: A thienoisoindigo-naphthalene polymer with ultrahigh mobility of 14.4 cm2/Vs that substantially exceeds benchmark values for amorphous silicon semiconductors. J. Am. Chem. Soc. 136, 9477–9483 (2014).

    Article  CAS  Google Scholar 

  7. I. Kang, H.-J. Yun, D.S. Chung, S.-K. Kwon, and Y.-H. Kim: Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896–14899 (2013).

    Article  CAS  Google Scholar 

  8. J. Lee, A.-R. Han, H. Yu, T.J. Shin, C. Yang, and J.H. Oh: Boosting the ambipolar performance of solution-processable polymer semiconductors via hybrid side-chain engineering. J. Am. Chem. Soc. 135, 9540–9547 (2013).

    Article  CAS  Google Scholar 

  9. J. Li, Y. Zhao, H.S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S.H. Lim, Y. Zhou, H. Su, and B.S. Ong: A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2 (2012).

  10. C. Luo, A.K.K. Kyaw, L.A. Perez, S. Patel, M. Wang, B. Grimm, G.C. Bazan, E.J. Kramer, and A.J. Heeger: General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility. Nano Lett. 14, 2764–2771 (2014).

    Article  CAS  Google Scholar 

  11. A. Tsumura, H. Koezuka, and T. Ando: Macromolecular electronic device: field-effect transistor with a polythiophene thin film. Appl. Phys. Lett. 49, 1210–1212 (1986).

    Article  CAS  Google Scholar 

  12. H. Dong, X. Fu, J. Liu, Z. Wang, and W. Hu: 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 6158–6183 (2013).

    Article  CAS  Google Scholar 

  13. Z. Bao, A. Dodabalapur, and A.J. Lovinger: Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).

    Article  CAS  Google Scholar 

  14. I. McCulloch, M. Heeney, C. Bailey, K. Genevicius, I. MacDonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M.L. Chabinyc, R.J. Kline, M.D. McGehee, and M.F. Toney: Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    Article  CAS  Google Scholar 

  15. H.-R. Tseng, H. Phan, C. Luo, M. Wang, L.A. Perez, S.N. Patel, L. Ying, E.J. Kramer, T.-Q. Nguyen, G.C. Bazan, and A.J. Heeger: High-mobility field-effect transistors fabricated with macroscopic aligned semiconducting polymers. Adv. Mater. 26, 2993–2998 (2014).

    Article  CAS  Google Scholar 

  16. J. Mei, D.H. Kim, A.L. Ayzner, M.F. Toney, and Z. Bao: Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130–20133 (2011).

    Article  CAS  Google Scholar 

  17. H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dötz, M. Kastler, and A. Facchetti: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Article  CAS  Google Scholar 

  18. H. Li, F.S. Kim, G. Ren, and S.A. Jenekhe: High-mobility n-type conjugated polymers based on electron-deficient tetraazabenzodifluoranthene diimide for organic electronics. J. Am. Chem. Soc. 135, 14920–14923 (2013).

    Article  CAS  Google Scholar 

  19. D. Venkateshvaran, M. Nikolka, A. Sadhanala, V. Lemaur, M. Zelazny, M. Kepa, M. Hurhangee, A.J. Kronemeijer, V. Pecunia, I. Nasrallah, I. Romanov, K. Broch, I. McCulloch, D. Emin, Y. Olivier, J. Cornil, D. Beljonne, and H. Sirringhaus: Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    Article  CAS  Google Scholar 

  20. H. Sirringhaus: 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Article  CAS  Google Scholar 

  21. C.B. Nielsen, M. Turbiez, and I. McCulloch: Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 25, 1859–1880 (2013).

    Article  CAS  Google Scholar 

  22. T. Liu and A. Troisi: Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925–933 (2014).

    Article  CAS  Google Scholar 

  23. A. Salleo, M.L. Chabinyc, M.S. Yang, and R.A. Street: Polymer thin-film transistors with chemically modified dielectric interfaces. Appl. Phys. Lett. 81, 4383–4385 (2002).

    Article  CAS  Google Scholar 

  24. L.H. Jimison, S. Himmelberger, D.T. Duong, J. Rivnay, M.F. Toney, and A. Salleo: Vertical confinement and interface effects on the microstructure and charge transport of P3HT thin films. J. Polym. Sci. B: Polym. Phys. 51, 611–620 (2013).

    Article  CAS  Google Scholar 

  25. R.J. Kline, M.D. McGehee, and M.F. Toney: Highly oriented crystals at the buried interface in polythiophene thin-film transistors. Nat. Mater. 5, 222–228 (2006).

    Article  CAS  Google Scholar 

  26. F.P.V. Koch, J. Rivnay, S. Foster, C. Müller, J.M. Downing, E. Buchaca-Domingo, P. Westacott, L. Yu, M. Yuan, M. Baklar, Z. Fei, C. Luscombe, M.A. McLachlan, M. Heeney, G. Rumbles, C. Silva, A. Salleo, J. Nelson, P. Smith, and N. Stingelin: The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors-poly(3-hexylthiophene), a model study. Prog. Polym. Sci. 38, 1978–1989 (2013).

    Article  CAS  Google Scholar 

  27. S. Himmelberger, K. Vandewal, Z. Fei, M. Heeney, and A. Salleo: Role of molecular weight distribution on charge transport in semiconducting polymers. Macromolecules 47, 7151–7157 (2014).

    Article  CAS  Google Scholar 

  28. A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom, J.P. Rabe, U. Scherf, and D. Neher: Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757–764 (2004).

    Article  CAS  Google Scholar 

  29. R.J. Kline, M.D. McGehee, E.N. Kadnikova, J. Liu, and J.M.J. Fréchet: Controlling the field-effect mobility of regioregular polythiophene by changing the molecular weight. Adv. Mater. 15, 1519–1522 (2003).

    Article  CAS  Google Scholar 

  30. W. Li, L. Yang, J.R. Tumbleston, L. Yan, H. Ade, and W. You: Controlling molecular weight of a high efficiency donor-acceptor conjugated polymer and understanding its significant impact on photovoltaic properties. Adv. Mater. 26, 4456–4462 (2014).

    Article  CAS  Google Scholar 

  31. R. Noriega, J. Rivnay, K. Vandewal, F.P.V. Koch, N. Stingelin, P. Smith, M.F. Toney, and A. Salleo: A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–1044 (2013).

    Article  CAS  Google Scholar 

  32. D.T. Duong, M.F. Toney, and A. Salleo: Role of confinement and aggregation in charge transport in semicrystalline polythiophene thin films. Phys. Rev.. 86, 205205 (2012).

    Article  CAS  Google Scholar 

  33. A. Devižis, A. Serbenta, K. Meerholz, D. Hertel, and V. Gulbinas: Ultrafast dynamics of carrier mobility in a conjugated polymer probed at molecular and microscopic length scales. Phys. Rev. Lett. 103, 027404 (2009).

    Article  CAS  Google Scholar 

  34. A. Devizis, K. Meerholz, D. Hertel, and V. Gulbinas: Ultrafast charge carrier mobility dynamics in poly(spirobifluorene-co-benzothiadiazole): influence of temperature on initial transport. Phys. Rev. B 82, 155204 (2010).

    Article  CAS  Google Scholar 

  35. A. Devižis, K. Meerholz, D. Hertel, and V. Gulbinas: Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498, 302–306 (2010).

    Article  CAS  Google Scholar 

  36. R.P. Fornari and A. Troisi: Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 9997–10007 (2014).

    Article  CAS  Google Scholar 

  37. T. Qin and A. Troisi: Relation between structure and electronic properties of amorphous MEH-PPV polymers. J. Am. Chem. Soc. 135, 11247–11256 (2013).

    Article  CAS  Google Scholar 

  38. D.P. McMahon, D.L. Cheung, L. Goris, J. Dacuña, A. Salleo, A. Troisi:Relation between microstructure and charge transport in polymers of different regioregularity. J. Phys. Chem. C 115, 19386–19393 (2011).

    Article  CAS  Google Scholar 

  39. R. Noriega, A. Salleo, and A.J. Spakowitz: Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. Proc. Natl. Acad. Sci. USA 110, 16315–16320 (2013).

    Article  CAS  Google Scholar 

  40. F. Laquai, G. Wegner, and H. Bässler: What determines the mobility of charge carriers in conjugated polymers?Phil. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 365, 1473–1487 (2007).

    CAS  Google Scholar 

  41. C. Scharsich, R.H. Lohwasser, M. Sommer, U. Asawapirom, U. Scherf, M. Thelakkat, D. Neher, and A. Köhler: Control of aggregate formation in poly(3-hexylthiophene) by solvent, molecular weight, and synthetic method. J. Polym. Sci. B: Polym. Phys. 50, 442–453 (2012).

    Article  CAS  Google Scholar 

  42. P. Pingel, A. Zen, R.D. Abellón, F.C. Grozema, L.D.A. Siebbeles, and D. Neher: Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv. Funct. Mater. 20, 2286–2295 (2010).

    Article  CAS  Google Scholar 

  43. J.-C. Bolsée, W.D. Oosterbaan, L. Lutsen, D. Vanderzande, and J. Manca: The importance of bridging points for charge transport in webs of conjugated polymer nanofibers. Adv. Funct. Mater. 23, 862–869 (2013).

    Article  CAS  Google Scholar 

  44. J. Rivnay, R. Noriega, R.J. Kline, A. Salleo, and M.F. Toney: Quantitative analysis of lattice disorder and crystallite size in organic semiconductor thin films. Phys. Rev. B 84, 045203 (2011).

    Article  CAS  Google Scholar 

  45. A.M. Hindeleh and R. Hosemann: Microparacrystals: the intermediate stage between crystalline and amorphous. J. Mater. Sci. 26, 5127–5133 (1991).

    Article  CAS  Google Scholar 

  46. J. Rivnay, R. Noriega, J.E. Northrup, R.J. Kline, M.F. Toney, and A. Salleo: Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).

    Article  CAS  Google Scholar 

  47. A. Assadi, C. Svensson, M. Willander, and O. Inganäs: Field-effect mobility of poly(3-hexylthiophene). Appl. Phys. Lett. 53, 195–197 (1988).

    Article  CAS  Google Scholar 

  48. J.D. Yuen, J. Fan, J. Seifter, B. Lim, R. Hufschmid, A.J. Heeger, and F. Wudl: High performance weak donor-acceptor polymers in thin film transistors: effect of the acceptor on electronic properties, ambipolar conductivity, mobility, and thermal stability. J. Am. Chem. Soc. 133, 20799–20807 (2011).

    Article  CAS  Google Scholar 

  49. I. Kang, T.K. An, J. Hong, H.-J. Yun, R. Kim, D.S. Chung, C.E. Park, Y.-H. Kim, and S.-K. Kwon: Effect of selenophene in a DPP copolymer incorporating a vinyl group for high-performance organic field-effect transistors. Adv. Mater. 25, 524–528 (2013).

    Article  CAS  Google Scholar 

  50. J.E. Donaghey, E.-H. Sohn, R.S. Ashraf, T.D. Anthopoulos, S.E. Watkins, K. Song, C.K. Williams, and I. McCulloch: Pyrroloindacenodithiophene polymers: the effect of molecular structure on OFET performance. Polym. Chem. 4, 3537–3544 (2013).

    Article  CAS  Google Scholar 

  51. A.T. Yiu, P.M. Beaujuge, O.P. Lee, C.H. Woo, M.F. Toney, and J.M.J. Fréchet: Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J. Am. Chem. Soc. 134, 2180–2185 (2012).

    Article  CAS  Google Scholar 

  52. J. Mei and Z. Bao: Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2014).

    Article  CAS  Google Scholar 

  53. V. Coropceanu, J. Cornil, D.A. da Silva Filho, Y. Olivier, R. Silbey, and J.-L. Brédas: Charge transport in organic semiconductors. Chem. Rev. 107, 926–952 (2007).

    Article  CAS  Google Scholar 

  54. J.L. Brédas, J.P. Calbert, D.A. da Silva Filho, and J. Cornil: Organic semiconductors: a theoretical characterization of the basic parameters governing charge transport. Proc. Natl. Acad. Sci. USA 99, 5804–5809 (2002).

    Article  CAS  Google Scholar 

  55. Y. Olivier, D. Niedzialek, V. Lemaur, W. Pisula, K. Müllen, U. Koldemir, J.R. Reynolds, R. Lazzaroni, J. Cornil, and D. Beljonne: 25th anniversary article: high-mobility hole and electron transport conjugated polymers: how structure defines function. Adv. Mater. 26, 2119–2136 (2014).

    Article  CAS  Google Scholar 

  56. T. Lei, J.-Y. Wang, and J. Pei: Design, synthesis, and structure-property relationships of isoindigo-based conjugated polymers. Acc. Chem. Res. 47, 1117–1126 (2014).

    Article  CAS  Google Scholar 

  57. Y. Deng, Y. Chen, X. Zhang, H. Tian, C. Bao, D. Yan, Y. Geng, and F. Wang: Donor-acceptor conjugated polymers with dithienocarbazoles as donor units: effect of structure on semiconducting properties. Macromolecules 45, 8621–8627 (2012).

    Article  CAS  Google Scholar 

  58. A. Troisi: The speed limit for sequential charge hopping in molecular materials. Org. Electron. 12, 1988–1991 (2011).

    Article  CAS  Google Scholar 

  59. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5 (2014)..

  60. M.S. Chen, O.P. Lee, J.R. Niskala, A.T. Yiu, C.J. Tassone, K. Schmidt, P.M. Beaujuge, S.S. Onishi, M.F. Toney, A. Zettl, and J.M.J. Fréchet: Enhanced solid-state order and field-effect hole mobility through control of nanoscale polymer aggregation. J. Am. Chem. Soc. 135, 19229–19236 (2013).

    Article  CAS  Google Scholar 

  61. A. Facchetti: π-conjugated polymers for organic electronics and photovoltaic cell applications. Chem. Mater. 23, 733–758 (2010).

    Article  CAS  Google Scholar 

  62. I. McCulloch, R.S. Ashraf, L. Biniek, H. Bronstein, C. Combe, J.E. Donaghey, D.I. James, C.B. Nielsen, B.C. Schroeder, and W. Zhang: Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc. Chem. Res. 45, 714–722 (2012).

    Article  CAS  Google Scholar 

  63. P. Carbone and A. Troisi: Charge diffusion in semiconducting polymers: analytical relation between polymer rigidity and time scales for intrachain and interchain hopping. J. Phys. Chem. Lett. 5, 2637–2641 (2014).

    Article  CAS  Google Scholar 

  64. W. Zhang, J. Smith, S.E. Watkins, R. Gysel, M. McGehee, A. Salleo, J. Kirkpatrick, S. Ashraf, T. Anthopoulos, M. Heeney, and I. McCulloch: Indacenodithiophene semiconducting polymers for high-performance, air-stable transistors. J. Am. Chem. Soc. 132, 11437–11439 (2010).

    Article  CAS  Google Scholar 

  65. X. Zhang, H. Bronstein, A.J. Kronemeijer, J. Smith, Y. Kim, R.J. Kline, L.J. Richter, T.D. Anthopoulos, H. Sirringhaus, K. Song, M. Heeney, W. Zhang, I. McCulloch, and D.M. DeLongchamp: Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 4 (2013).

  66. T. Schuettfort, S. Huettner, S. Lilliu, J.E. Macdonald, L. Thomsen, and C.R. McNeill: Surface and bulk structural characterization of a high-mobility electron-transporting polymer. Macromolecules 44, 1530–1539 (2011).

    Article  CAS  Google Scholar 

  67. C. Wang, J. Rivnay, S. Himmelberger, K. Vakhshouri, M.F. Toney, E.D. Gomez, and A. Salleo: Ultrathin body poly(3-hexylthiophene) transistors with improved short-channel performance. ACS Appl. Mater. Interfaces 5, 2342–2346 (2013).

    Article  CAS  Google Scholar 

  68. R.P. Fornari and A. Troisi: Narrower bands with better charge transport: the counterintuitive behavior of semiconducting copolymers. Adv. Mater. 26, 7627–7631 (2014).

    Article  CAS  Google Scholar 

  69. H.N. Tsao, D.M. Cho, I. Park, M.R. Hansen, A. Mavrinskiy, D.Y. Yoon, R. Graf, W. Pisula, H.W. Spiess, and K. Müllen: Ultrahigh mobility in polymer field-effect transistors by design. J. Am. Chem. Soc. 133, 2605–2612 (2011).

    Article  CAS  Google Scholar 

  70. D.S. Pearson, P.A. Pincus, G.W. Heffner, and S.J. Dahman: Effect of molecular weight and orientation on the conductivity of conjugated polymers. Macromolecules 26, 1570–1575 (1993).

    Article  CAS  Google Scholar 

  71. J.-F. Chang, B. Sun, D.W. Breiby, M.M. Nielsen, T.I. Sölling, M. Giles, I. McCulloch, and H. Sirringhaus: Enhanced mobility of poly(3-hexylthiophene) transistors by spin-coating from high-boiling-point solvents. Chem. Mater. 16, 4772–4776 (2004).

    Article  CAS  Google Scholar 

  72. P.K.-H. Ho, L.-L. Chua, M. Dipankar, X.Y. Gao, D.C. Qi, A.T.-S. Wee, J.-F. Chang, and R.H. Friend: Solvent effects on chain orientation and interchain π-interaction in conjugated polymer thin films: direct measurements of the air and substrate interfaces by near-edge x-ray absorption spectroscopy. Adv. Mater. 19, 215–221 (2007).

    Article  CAS  Google Scholar 

  73. J. Rivnay, R. Steyrleuthner, L.H. Jimison, A. Casadei, Z. Chen, M.F. Toney, A. Facchetti, D. Neher, and A. Salleo: Drastic control of texture in a high performance n-type polymeric semiconductor and implications for charge transport. Macromolecules 44, 5246–5255 (2011).

    Article  CAS  Google Scholar 

  74. L.H. Jimison, M.F. Toney, I. McCulloch, M. Heeney, and A. Salleo: Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 1568–1572 (2009).

    Article  CAS  Google Scholar 

  75. J. Li, J. Du, J. Xu, H.L.W. Chan, and F. Yan: The influence of gate dielectrics on a high-mobility n-type conjugated polymer in organic thin-film transistors. Appl. Phys. Lett. 100, 033301 (2012).

    Article  CAS  Google Scholar 

  76. J. Veres, S.D. Ogier, S.W. Leeming, D.C. Cupertino, and S. Mohialdin Khaffaf: Low-k insulators as the choice of dielectrics in organic field-effect transistors. Adv. Funct. Mater. 13, 199–204 (2003).

    Article  CAS  Google Scholar 

  77. F. Pettersson, R. Österbacka, J. Koskela, A. Kilpelä, T. Remonen, Y. Zhang, S. Inkinen, C.-E. Wilén, R. Bollström, M. Toivakka, A. Määttänen, P. Ihalainen, and J. Peltonen: Ion-modulated transistors on paper using phase-separated semiconductor/insulator blends. MRS Commun. 4, 51–55 (2014).

    Article  CAS  Google Scholar 

  78. J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M.J. Renn, T.P. Lodge, and C. Daniel Frisbie: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat. Mater. 7, 900–906 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

S. H. and A. S. acknowledge financial support from the National Science Foundation (Award no. DMR 1205752).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Salleo.

Additional information

This author was an editor of this journal during the review and decision stage. For the MRC policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/mrc-editor-information/

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Himmelberger, S., Salleo, A. Engineering semiconducting polymers for efficient charge transport. MRS Communications 5, 383–395 (2015). https://doi.org/10.1557/mrc.2015.44

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.44

Navigation