Skip to main content
Log in

Bio-inspired responsive polymer pillar arrays

  • Polymers/Soft Matter Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

High-aspect-ratio (HAR) pillar arrays offer large surface area, well-defined surface topography, and large mechanical compliance. In this Prospective, we showcase micro- and nanopillar array systems that exploit the responsiveness and/or harness the mechanical instabilities for myriad surface-mediated applications, including tunable wetting, adhesion, optical properties, and actuation. In each application, we start with biological examples with HAR pillar structures, and discuss strategies to fabricate responsive HAR polymer pillar structures. We then discuss approaches to tune the surface topography, such as via bending, tilting, expansion or contraction, and collapsing of the pillars, and the resulting change of surface and optical properties, and their dynamic actuation. In each system, we discuss the controllability and recoverability of pillar deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

Similar content being viewed by others

References

  1. T. Ohzono, H. Monobe, K. Shiokawa, M. Fujiwara, and Y. Shimizu: Shaping liquid on a micrometre scale using microwrinkles as deformable open channel capillaries. Soft Matte. 5, 4658 (2009).

    CAS  Google Scholar 

  2. K. Haraguchi, H.J. Li, L. Song, and K. Murata: Tunable optical and swelling/ deswelling properties associated with control of the coil-to-globule transition of poly(N-isopropylacrylamide) in polymer-clay nanocomposite gels. Macromolecule. 40, 6973 (2007).

    CAS  Google Scholar 

  3. J. Kim, J. Yoon, and R.C. Hayward: Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nat. Mater. 9, 159 (2010).

    Google Scholar 

  4. K. Haraguchi and T. Takehisa: Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120 (2002).

    CAS  Google Scholar 

  5. K.-U. Jeong, J.-H. Jang, C.Y. Koh, M.J. Graham, K.-Y. Jin, S.-J. Park, C. Nah, M.-H. Lee, S.Z.D. Cheng, and E.L. Thomas: Colour-tunable spiral photonic actuators. J. Mater. Chem. 19, 1956 (2009).

    CAS  Google Scholar 

  6. C.H. Lee, H.S. Lim, J. Kim, and J.H. Cho: Counterion-induced reversibly switchable transparency in smart windows. ACS Nan. 5, 7397 (2011).

    CAS  Google Scholar 

  7. S.G. Lee, D.Y. Lee, H.S. Lim, D.H. Lee, S. Lee, and K. Cho: Switchable transparency and wetting of elastomeric smart windows. Adv. Mater. 22, 5013 (2010).

    CAS  Google Scholar 

  8. P.-C. Lin, S. Vajpayee, A. Jagota, C.-Y. Hui, and S. Yang: Mechanically tunable dry adhesive from wrinkled elastomers. Soft Matte. 4, 1830 (2008).

    CAS  Google Scholar 

  9. L. Dong, A.K. Agarwal, D.J. Beebe, and H. Jiang: Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Natur. 442, 551 (2006).

    CAS  Google Scholar 

  10. P. Gupta, K. Vermani, and S. Garg: Hydrogels: from controlled release to pH-responsive drug delivery. Drug Discov. Toda. 7, 569 (2002).

    CAS  Google Scholar 

  11. D. Schmaljohann: Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 58, 1655 (2006).

    CAS  Google Scholar 

  12. S. Dai, P. Ravi, and K.C. Tam: pH-responsive polymers: synthesis, properties and applications. Soft Matte. 4, 435 (2008).

    CAS  Google Scholar 

  13. Y. Zhao and T. Ikeda: Smart Light-responsive Materials: Azobenzenecontaining Polymers and Liquid Crystals (John Wiley & Sons, Hoboken, New Jersey, 2009).

    Google Scholar 

  14. S.-k Ahn, R.M. Kasi, S.-C. Kim, N. Sharma, and Y. Zhou: Stimuli-responsive polymer gels. Soft Matte. 4, 1151 (2008).

    CAS  Google Scholar 

  15. J. Lötters, W. Olthuis, P. Veltink, and P. Bergveld: The mechanical properties of the rubber elastic polymer polydimethylsiloxane for sensor applications. J. Micromech. Microeng. 7, 145 (1997).

    Google Scholar 

  16. M. Warner and E.M. Terentjev: Liquid Crystal Elastomers (Oxford University Press, New York, 2003).

    Google Scholar 

  17. C.M. Spillmann, B.R. Ratna, and J. Naciri: Anisotropic actuation in electroclinic liquid crystal elastomers. Appl. Phys. Lett. 90, 021911 (2007).

    Google Scholar 

  18. I.A. Rousseau and P.T. Mather: Shape memory effect exhibited by smectic-C liquid crystalline elastomers. J. Am. Chem. Soc. 125, 15300 (2003).

    CAS  Google Scholar 

  19. D.L. Thomsen, P. Keller, J. Naciri, R. Pink, H. Jeon, D. Shenoy, and B.R. Ratna: Liquid crystal elastomers with mechanical properties of a muscle. Macromolecule. 34, 5868 (2001).

    CAS  Google Scholar 

  20. C.J. Kloxin and C.N. Bowman: Covalent adaptable networks: smart, reconfigurable and responsive network systems. Chem. Soc. Rev. 42, 7161 (2013).

    CAS  Google Scholar 

  21. A. Lendlein and S. Kelch: Shape-memory polymers. Angew. Chem. Inter. Ed. 41, 2034 (2002).

    CAS  Google Scholar 

  22. P.T. Mather, X.F. Luo, and I.A. Rousseau: Shape memory polymer research. Ann. Rev. Mater. Res. 39, 445 (2009).

    CAS  Google Scholar 

  23. T. Xie: Tunable polymer multi-shape memory effect. Natur. 464, 267 (2010).

    CAS  Google Scholar 

  24. I. Bellin, S. Kelch, R. Langer, and A. Lendlein: Polymeric triple-shape materials. Proc. Natl. Acad. Sci. U. S. A. 103, 18043 (2006).

    CAS  Google Scholar 

  25. T. Xie, X. Xiao, and Y.T. Cheng: Revealing triple–shape memory effect by polymer bilayers. Macromol. Rapid Commun. 30, 1823 (2009).

    CAS  Google Scholar 

  26. F. Liu and M.W. Urban: Recent advances and challenges in designing stimuli-responsive polymers. Prog. Polym. Sci. 35, 3 (2010).

    CAS  Google Scholar 

  27. M.A.C. Stuart, W.T. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, and M. Urban: Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9, 101 (2010).

    Google Scholar 

  28. D. Roy, J.N. Cambre, and B.S. Sumerlin: Future perspectives and recent advances in stimuli-responsive materials. Prog. Polym. Sci. 35, 278 (2010).

    CAS  Google Scholar 

  29. W.-G. Bae, H.N. Kim, D. Kim, S.-H. Park, H.E. Jeong, and K.-Y. Suh: 25th anniversary article: scalable multiscale patterned structures inspired by nature: the role of hierarchy. Adv. Mater. 26, 675 (2014).

    CAS  Google Scholar 

  30. J. Zhang and Y. Han: Active and responsive polymer surfaces. Chem. Soc. Rev. 39, 676 (2010).

    CAS  Google Scholar 

  31. M. Liu, S. Wang, and L. Jiang: Bioinspired multiscale surfaces with special wettability. MRS Bull. 38, 375 (2013).

    CAS  Google Scholar 

  32. Z.B. Hu, Y.Y. Chen, C.J. Wang, Y.D. Zheng, and Y. Li: Polymer gels with engineered environmentally responsive surface patterns. Natur. 393, 149 (1998).

    CAS  Google Scholar 

  33. Y.T. Cheng, D. Rodak, C. Wong, and C. Hayden: Effects of micro-and nano-structures on the self-cleaning behaviour of lotus leaves. Nanotechnolog. 17, 1359 (2006).

    Google Scholar 

  34. W. Barthlott and C. Neinhuis: Purity of the sacred lotus, or escape from contamination in biological surfaces. Plant. 202, 1 (1997).

    CAS  Google Scholar 

  35. C. Neinhuis and W. Barthlott: Characterization and distribution of waterrepellent, self-cleaning plant surfaces. Ann. Bot. 79, 667 (1997).

    Google Scholar 

  36. S. Kinoshita, S. Yoshioka, and K. Kawagoe: Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc. R. Soc. Lond. B, Biol. Sci. 269, 1417 (2002).

    Google Scholar 

  37. R.A. Potyrailo, H. Ghiradella, A. Vertiatchikh, K. Dovidenko, J.R. Cournoyer, and E. Olson: Morpho butterfly wing scales demonstrate highly selective vapour response. Nat. Photonic. 1, 123 (2007).

    CAS  Google Scholar 

  38. P. Vukusic, J. Sambles, C. Lawrence, and R. Wootton: Quantified interference and diffraction in single Morpho butterfly scales. Proc. R. Soc. Lond. B, Biol. Sci. 266, 1403 (1999).

    Google Scholar 

  39. H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt: Mechanics of hierarchical adhesion structures of geckos. Mech. Mater. 37, 275 (2005).

    Google Scholar 

  40. K. Autumn, M. Sitti, Y.A. Liang, A.M. Peattie, W.R. Hansen, S. Sponberg, T.W. Kenny, R. Fearing, J.N. Israelachvili, and R.J. Full: Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. U. S. A. 99, 12252 (2002).

    CAS  Google Scholar 

  41. K. Autumn and A.M. Peattie: Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42, 1081 (2002).

    Google Scholar 

  42. D. Chandra and S. Yang: Stability of high-aspect-ratio micropillar arrays against adhesive and capillary forces. Acc. Chem. Res. 43, 1080 (2010).

    CAS  Google Scholar 

  43. X. Zhang, F. Shi, J. Niu, Y.G. Jiang, and Z.Q. Wang: Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18, 621 (2008).

    CAS  Google Scholar 

  44. P. Roach, N.J. Shirtcliffe, and M.I. Newton: Progess in superhydrophobic surface development. Soft Matte. 4, 224 (2008).

    CAS  Google Scholar 

  45. D. Quéré: Wetting and roughness. Annu. Rev. Mater. Res. 38, 71–99 (2008).

    Google Scholar 

  46. M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, and T. Watanabe: Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces. Langmui. 16, 5754 (2000).

    CAS  Google Scholar 

  47. X.J. Feng and L. Jiang: Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 3063 (2006).

    CAS  Google Scholar 

  48. A.B.D. Cassie and S. Baxter: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 (1944).

    CAS  Google Scholar 

  49. R.N. Wenzel: Resistance of solid surfaces to wetting by water. Ind. Eng. Chem. 28, 988 (1936).

    CAS  Google Scholar 

  50. C.G. Furmidge: Studies at phase interfaces. I. the sliding of liquid drops on solid surfaces and a theory for spray retention. J. Colloid Sci. 17, 309 (1962).

    CAS  Google Scholar 

  51. L. Feng, Y.A. Zhang, J.M. Xi, Y. Zhu, N. Wang, F. Xia, and L. Jiang: Petal effect: a superhydrophobic state with high adhesive force. Langmui. 24, 4114 (2008).

    CAS  Google Scholar 

  52. B.W. Xin and J.C. Hao: Reversibly switchable wettability. Chem. Soc. Rev. 39, 769 (2010).

    CAS  Google Scholar 

  53. Y. Zheng, X. Gao, and L. Jiang: Directional adhesion of superhydrophobic butterfly wings. Soft Matte. 3, 178 (2007).

    CAS  Google Scholar 

  54. T.-i Kim and K.Y. Suh: Unidirectional wetting and spreading on stooped polymer nanohairs. Soft Matte. 5, 4131 (2009).

    CAS  Google Scholar 

  55. Y. Rahmawan, T.-i Kim, S.J. Kim, K.-R. Lee, M.-W. Moon, and K.-Y. Suh: Surface energy tunable nanohairy dry adhesive by broad ion beam irradiation. Soft Matte. 8, 1673 (2012).

    CAS  Google Scholar 

  56. H. Yoon, H.E. Jeong, T.-i Kim, T.J. Kang, D. Tahk, K. Char, and K.Y. Suh: Adhesion hysteresis of Janus nanopillars fabricated by nanomolding and oblique metal deposition. Nano Toda. 4, 385 (2009).

    CAS  Google Scholar 

  57. K.-H. Chu, R. Xiao, and E.N. Wang: Uni-directional liquid spreading on asymmetric nanostructured surfaces. Nat. Mater. 9, 413 (2010).

    CAS  Google Scholar 

  58. C.M. Chen and S. Yang: Directed water shedding on high–aspect–ratio shape memory polymer micropillar arrays. Adv. Mater. 26, 1283 (2014).

    CAS  Google Scholar 

  59. J.Y. Chung, J.P. Youngblood and C.M. Stafford: Anisotropic wetting on tunable micro-wrinkled surfaces. Soft Matte. 3, 1163 (2007).

    CAS  Google Scholar 

  60. P.-C. Lin and S. Yang: Mechanically switchable wetting on wrinkled elastomers with dual-scale roughness. Soft Matte. 5, 1011 (2009).

    CAS  Google Scholar 

  61. K. Khare, J. Zhou, and S. Yang: Tunable open-channel microfluidics on soft poly(dimethylsiloxane) (PDMS) substrates with sinusoidal grooves. Langmui. 25, 12794 (2009).

    CAS  Google Scholar 

  62. A.R. Parker and C.R. Lawrence: Water capture by a desert beetle. Natur. 414, 33 (2001).

    CAS  Google Scholar 

  63. Y. Zheng, J. Li, E. Lee, and S. Yang: Light-induced shape recovery of deformed shape memory polymer micropillar arrays with gold nanorods. RSC Adv. 5, 30495 (2015). DOI: 10.1039/c5ra01469g.

    CAS  Google Scholar 

  64. Z.L. Wu, R. Wei, A. Buguin, J.-M. Taulemesse, N. Le Moigne, A. Bergeret, X. Wang, and P. Keller: Stimuli-responsive topological change of microstructured surfaces and the resultant variations of wetting properties. ACS Appl. Mater. Interface. 5, 7485 (2013).

    CAS  Google Scholar 

  65. G. Huber, H. Mantz, R. Spolenak, K. Mecke, K. Jacobs, S.N. Gorb, and E. Arzt: Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. U. S. A. 102, 16293 (2005).

    CAS  Google Scholar 

  66. H.E. Jeong, M.K. Kwak, and K.Y. Suh: Stretchable, adhesion-tunable dry adhesive by surface wrinkling. Langmui. 26, 2223 (2010).

    CAS  Google Scholar 

  67. D.M. Drotlef, P. Blümler, and A. del Campo: Magnetically actuated patterns for bioinspired reversible adhesion (dry and wet). Adv. Mater. 26, 775 (2014).

    CAS  Google Scholar 

  68. S. Reddy, E. Arzt, and A. del Campo: Bioinspired surfaces with switchable adhesion. Adv. Mater. 19, 3833 (2007).

    CAS  Google Scholar 

  69. T. Xie and X.C. Xiao: Self-peeling reversible dry adhesive system. Chem. Mater. 20, 2866 (2008).

    CAS  Google Scholar 

  70. R. Wang and T. Xie: Shape memory- and hydrogen bonding-based strong reversible adhesive system. Langmui. 26, 2999 (2010).

    CAS  Google Scholar 

  71. M.G. De: Velvet Type Fabric and Method of Producing Same Velcro Sa Soulie, U. S. Patent No. 2,717,437 (1955).

    Google Scholar 

  72. Epukas: Burdock—Arctium Tomentosum (Wikipedia Commons, 2008).

    Google Scholar 

  73. A. Freeman and B. Golden: Why didn’t I Think of that: Bizarre Origins of Ingenious Inventions We Couldn’t Live Without (John Wiley & Sons, Hoboken, New Jersey, 1997).

    Google Scholar 

  74. C.-M. Chen, C.-L. Chiang, C.-L. Lai, T. Xie, and S. Yang: Buckling-based strong dry adhesives via interlocking. Adv. Funct. Mater. 23, 3813 (2013).

    CAS  Google Scholar 

  75. C.R. Jin, A. Jagota, and C.Y. Hui: Structure and energetics of dislocations at micro-structured complementary interfaces govern adhesion. Adv. Funct. Mater. 23, 3453 (2013).

    CAS  Google Scholar 

  76. H. Ko, J. Lee, B.E. Schubert, Y.L. Chueh, P.W. Leu, R.S. Fearing, and A. Javey: Hybrid core-shell nanowire forests as self-selective chemical connectors. Nano Lett. 9, 2054 (2009).

    CAS  Google Scholar 

  77. Y. Rahmawan, S.M. Kang, S.Y. Lee, K.-Y. Suh, and S. Yang: Enhanced shear adhesion by mechanical interlocking of dual-scaled elastomeric micropillars with embedded silica particles. Macromol. React. Eng. 7, 616 (2013).

    CAS  Google Scholar 

  78. H. Shahsavan and B.X. Zhao: Conformal adhesion enhancement on biomimetic microstructured surfaces. Langmui. 27, 7732 (2011).

    CAS  Google Scholar 

  79. A.K. Singh, Y. Bai, N. Nadermann, A. Jagota, and C.Y. Hui: Adhesion of microchannel-based complementary surfaces. Langmui. 28, 4213 (2012).

    CAS  Google Scholar 

  80. S. Vajpayee, K. Khare, S. Yang, C.-Y. Hui, and A. Jagota: Adhesion selectivity using rippled surfaces. Adv. Funct. Mater. 21, 547 (2011).

    CAS  Google Scholar 

  81. C. Pang, D. Kang, T.-i Kim, and K.-Y. Suh: Analysis of preload-dependent reversible mechanical interlocking using beetle-inspired wing locking device. Langmui. 28, 2181 (2011).

    Google Scholar 

  82. C. Pang, T.I. Kim, W.G. Bae, D. Kang, S.M. Kim, and K.Y. Suh: Bioinspired reversible interlocker using regularly arrayed high aspect-ratio polymer fibers. Adv. Mater. 24, 475 (2012).

    CAS  Google Scholar 

  83. C. Pang, G.-Y. Lee, T.-i Kim, S.M. Kim, H.N. Kim, S.-H. Ahn, and K.-Y. Suh: A flexible and highly sensitive strain-gauge sensor using reversible interlocking of nanofibres. Nat. Mater. 11, 795 (2012).

    CAS  Google Scholar 

  84. M. De Stefano, L. De Stefano, and R. Congestri: Functional morphology of micro- and nanostructures in two distinct diatom frustules. Superlattices Microstruct. 46, 64 (2009).

    Google Scholar 

  85. S. Kinoshita and S. Yoshioka: Structural colors in nature: the role of regularity and irregularity in the structure. Chem Phys Che. 6, 1442 (2005).

    CAS  Google Scholar 

  86. P. Vukusic and J.R. Sambles: Photonic structures in biology. Natur. 424, 852 (2003).

    CAS  Google Scholar 

  87. M. Srinivasarao: Nano-optics in the biological world: beetles, butterflies, birds, and moths. Chem. Rev. 99, 1935 (1999).

    CAS  Google Scholar 

  88. Y. Takeoka: Angle-independent structural coloured amorphous arrays. J. Mater. Chem. 22, 23299 (2012).

    CAS  Google Scholar 

  89. D.G. Stavenga, H.L. Leertouwer, N.J. Marshall, and D. Osorio: Dramatic colour changes in a bird of paradise caused by uniquely structured breast feather barbules. Proc. R. Soc. Lond. B, Biol. Sci. 278, 2098 (2011).

    Google Scholar 

  90. A.L. Holt, A.M. Sweeney, S. Johnsen, and D.E. Morse: A highly distributed Bragg stack with unique geometry provides effective camouflage for Loliginid squid eyes. J. R. Soc. Interfac. 8, 1386 (2011).

    Google Scholar 

  91. F. Liu, B.Q. Dong, X.H. Liu, Y.M. Zheng, and J. Zi: Structural color change in longhorn beetles Tmesisternus isabellae. Opt. Expres. 17, 16183 (2009).

    CAS  Google Scholar 

  92. S. Zylinski and S. Johnsen: Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937 (2011).

    CAS  Google Scholar 

  93. M. Izumi, A.M. Sweeney, D. DeMartini, J.C. Weaver, M.L. Powers, A. Tao, T.V. Silvas, R.M. Kramer, W.J. Crookes-Goodson, L.M. Mathger, R.R. Naik, R.T. Hanlon, and D.E. Morse: Changes in reflectin protein phosphorylation are associated with dynamic iridescence in squid. J. R. Soc. Interfac. 7, 549 (2010).

    CAS  Google Scholar 

  94. W. Park and J.-B. Lee: Mechanically tunable photonic crystal structure. Appl. Phys. Lett. 85, 4845 (2004).

    CAS  Google Scholar 

  95. H. Kim, J. Ge, J. Kim, S. Choi, H. Lee, W. Park, Y. Yin, and S. Kwon: Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat. Photonic. 3, 534 (2009).

    CAS  Google Scholar 

  96. X. Zhu, Y. Zhang, D. Chandra, S.-C. Cheng, J.M. Kikkawa, and S. Yang: Two-dimensional photonic crystals with anisotropic unit cells imprinted from poly (dimethylsiloxane) membranes under elastic deformation. Appl. Phys. Lett. 93, 161911 (2008).

    Google Scholar 

  97. A.C. Arsenault, T.J. Clark, G. von Freymann, L. Cademartiri, R. Sapienza, J. Bertolotti, E. Vekris, S. Wong, V. Kitaev, and I. Manners: From colour fingerprinting to the control of photoluminescence in elastic photonic crystals. Nat. Mater. 5, 179 (2006).

    CAS  Google Scholar 

  98. D. Chandra, S. Yang, A.A. Soshinsky, and R.J. Gambogi: Biomimetic ultrathin whitening by capillary-force-induced random clustering of hydrogel micropillar arrays. ACS Appl. Mater. Interface. 1, 1698 (2009).

    CAS  Google Scholar 

  99. E. Lee, M. Zhang, Y. Cho, Y. Cui, J. Van der Spiegel, N. Engheta, and S. Yang: Tilted pillars on wrinkled blastomers as a reversibly tunable optical window. Adv. Mater. 26, 4127 (2014).

    CAS  Google Scholar 

  100. C. Brennen and H. Winet: Fluid-mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339 (1977).

    Google Scholar 

  101. U. Urutseg and L. Kohidai: Difference of Beating Pattern of Flagellum and Cilia (Wikipedia Commons, 2011).

    Google Scholar 

  102. C. Daghlian: Scanning Electron Microscope Image of Lung Trachea Epithelium (Wikipedia Commons, 2006).

    Google Scholar 

  103. P. Satir and M.A. Sleigh: The physiology of cilia and mucociliary interactions. Annu. Rev. Physiol. 52, 137 (1990).

    CAS  Google Scholar 

  104. M.A. Sleigh, J.R. Blake, and N. Liron: The propulsion of mucus by cilia. Am. Rev. Resp. Dis. 137, 726 (1988).

    CAS  Google Scholar 

  105. B.A. Evans, A.R. Shields, R.L. Carroll, S. Washburn, M.R. Falvo, and R. Superfine: Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 1428 (2007).

    CAS  Google Scholar 

  106. A. Sidorenko, T. Krupenkin, A. Taylor, P. Fratzl, and J. Aizenberg: Reversible switching of hydrogel-actuated nanostructures into complex micropatterns. Scienc. 315, 487 (2007).

    CAS  Google Scholar 

  107. X. He, M. Aizenberg, O. Kuksenok, L.D. Zarzar, A. Shastri, A.C. Balazs, and J. Aizenberg: Synthetic homeostatic materials with chemomechano- chemical self-regulation. Natur. 487, 214 (2012).

    CAS  Google Scholar 

  108. K. Autumn, Y.A. Liang, S.T. Hsieh, W. Zesch, W.P. Chan, T.W. Kenny, R. Fearing, and R.J. Full: Adhesive force of a single gecko foot-hair. Nature 405, 681 (2000).

    CAS  Google Scholar 

Download references

Acknowledgments

The work shown here by the Yang laboratory was supported by the National Science Foundation (NSF) CAREER grant (no. DMR-0548070), GOALI grant (no. DMR-1105208), and EFRI-SEED grant (no. EFRI-1038215), and ACS/PRF grant (no. 50911-ND7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, E., Yang, S. Bio-inspired responsive polymer pillar arrays. MRS Communications 5, 97–114 (2015). https://doi.org/10.1557/mrc.2015.18

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2015.18

Navigation