Skip to main content

Advertisement

Log in

A perspective on electrical energy storage

  • Prospective Articles
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Electrochemical technologies promise to provide the means for electrical energy storage of electricity generated from wind, solar, or nuclear energies. The challenge is to provide this storage in rechargeable batteries or clean fuels at a cost that is competitive with fossil fuels for replacement: (1) of vehicles powered by the internal combustion engine by electric vehicles and (2) of centralized power plants using intermittent electricity generated by wind and solar energy or constant electricity from a nuclear power plant, all serving a variable demand. This perspective outlines existing and possible lines of materials research for the development of rechargeable batteries or the production of clean fuels within the constraints of electrochemical technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Z. Yang, J. Zhang, M.C.W. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, and J. Liu: Electrochemical energy storage for green grid. Chem. Rev. 111, 3577 (2011).

    Article  CAS  Google Scholar 

  2. J.B. Goodenough and Y. Kim: Challenges for rechargeable Li batteries. Chem. Mater. 22, 587 (2010).

    Article  CAS  Google Scholar 

  3. K. Mizushima, P.C. Jones, P.J. Wiseman, and J.B. Goodenough: LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 15, 783 (1980).

    Article  CAS  Google Scholar 

  4. S. Basu: Ambient-temperature secondary battery. U. S. Patent No. 4, 423, 125 (1983).

    Google Scholar 

  5. R. Yazami and Ph. Touzain: A reversible graphite-lithium negative electrode for electrochemical generators. J. Power Sources 9, 365 (1983).

    Article  CAS  Google Scholar 

  6. A. Yoshin, K. Sanechika, and T. Nakjima: Secondary battery. U. S. Patent No. 4,688,595 and Japanese Patent No. 1989293 (1985).

    Google Scholar 

  7. M.M. Thackeray, W. I.F. David, P.G. Bruce, and J.B. Goodenough: Lithium insertion into manganese spinels. Mater. Res. Bull. 18, 461 (1983).

    Article  CAS  Google Scholar 

  8. R.V. Chebiam, A.M. Kannan, F. Prado, and A. Manthiram: Comparison of the chemical stability of high energy density cathodes of lithium-ion batteries. Electrochem. Commun. 3, 624 (2001).

    Article  CAS  Google Scholar 

  9. S. Venkatraman, Y. Shin, and A. Manthiram: Phase relationships and structural and chemical stabilities of charged Li1-xCoO2-δ and Li1-xNi0.85Co0.15O2-δ. Electrochem. Solid State Lett. 6, A9 (2003).

    Article  CAS  Google Scholar 

  10. Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, and J.R. Dahn: Synthesis and electrochemistry of LiNixMn2-x04. J. Electrochem. Soc. 144, 205 (1997).

    Article  CAS  Google Scholar 

  11. T. Ohzuku, K. Ariyoshi, and S. Yamamoto: Synthesis and characterization of Li[Ni1/2Mn3/2]04 by two-step solid state reaction. J. Ceram. Soc. Jpn 110, 501 (2002).

    Article  CAS  Google Scholar 

  12. A. Manthiram, K. Chemelewski, and E.-S. Lee: A perspective on the high-voltage LiMn1.5Ni0504 spinel cathode for lithiumion batteries. Energy Environ. Sci. 7, 1339 (2014).

    Article  CAS  Google Scholar 

  13. E. Ferg, R.J. Gummoow, A. de Koek, and M.M. Thackeray: Spinel anodes for lithiumion batteries. J. Electrochem. Soc. 141, L147 (1994).

    Article  CAS  Google Scholar 

  14. A. Manthiram and J.B. Goodenough: Lithium insertion into Fe2(S04)3-type frameworks. J. Power Sources 26, 403 (1989).

    Article  CAS  Google Scholar 

  15. A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough: Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188 (1997).

    Article  CAS  Google Scholar 

  16. Y. Dong, L. Wang, S. Zhang, Y. Zhao, J. Zhou, H. Xie, and J.B. Goodenough: Two-phase interface in LiMnPCU nanoplates. J. Power Sources 215, 116 (2012).

    Article  CAS  Google Scholar 

  17. M.N. Obrovac and L. Christensen: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93 (2004).

    Article  CAS  Google Scholar 

  18. J. Li and J.R. Dahn: An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).

    Article  CAS  Google Scholar 

  19. C.-M. Park, J.-H. Kim, H. Kim, and H.-J. Sohn: Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 39, 3115 (2010).

    Article  CAS  Google Scholar 

  20. Z. Lu, Z. Chen, and J.R. Dahn: Lack of cation clustering in Li[NixLi1/3-2x/ 3Mn2/3-x/3]02 (0<x<1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]02 (0<x<1). Chem. Mater. 15, 3214 (2003).

    Article  CAS  Google Scholar 

  21. A.R. Armstrong, M. Holzapfel, P. Novak, C.S. Johnson, S.H. Kang, M.M. Thackeray, and P.G. Bruce: Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li [Ni0.2Li0.2Mn0.6]O2. J- Am. Chem. Soc. 128, 8694 (2006).

    Article  CAS  Google Scholar 

  22. D. Carlier, J.H. Cheng, R. Berthelot, M. Guignard, M. Yoncheva, R. Stoyanova, B.J. Hwang, and C. Delmas: The P2-Na2/3Co2/3Mn1/302 phase: structure, physical properties and electrochemical behavior as positive electrode in sodium battery. Dalton Trans. 40, 9306 (2011).

    Article  CAS  Google Scholar 

  23. J.B. Goodenough, H.Y.-P. Hong, and J.A. Kafalas: Fast Na+-ion transport in skeleton structures Mater. Res. Bull. 11, 203 (1976).

    Article  CAS  Google Scholar 

  24. J. Gopalakrishinan and K.K. Rangan: Vanadium phosphate (V2(PO4)3): a novel NASICON-type vanadium phosphate synthesized by oxidative dein-tercalation of sodium from sodium vanadium phosphate (Na3V2(P04)3). Chem. Mater. 4, 745 (1992).

    Article  Google Scholar 

  25. R.K.B. Gover, A. Bryan, P. Burns, and J. Barker: The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(P04)2F3. Solid State Ionics, 177, 1495 (2006).

    Article  CAS  Google Scholar 

  26. J. Song, L. Wang, Y. Yu, J. Liu, B. Guo, P. Xiao, J. Lee, X. Yang, G. Henkelman, and J.B. Goodenough: Removal of interstitial H20 in hexacya-nometallates for a superior cathode of a sodiumion battery. J. Amer. Chem. Soc. (in review).

  27. R.D. Rauh, K.M. Abraham, G.F. Pearson, J.K. Surprenant, and S.B. Brummer: A lithium/dissolved sulfur battery with an organic electrolyte. J. Electrochem. Soc. 126, 523 (1979).

    Article  CAS  Google Scholar 

  28. X. Ji, K.T. Lee, and L.F. Nazar: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8, 500 (2009).

    Article  CAS  Google Scholar 

  29. P.G. Bruce, S.A. Freunberger, L.J. Hardwick, and J.M. Tarascon: Li-02 and Li-S batteries with high energy storage. Nat. Mater. 11, 19 (2012).

    Article  CAS  Google Scholar 

  30. A. Manthiram, Y.-Z. Fu, and Y.-S. Su: Challenges and prospects of lithium-sulfur batteries. Ace. Chem. Res. 46, 1125 (2013).

    Article  CAS  Google Scholar 

  31. A. Manthiram, Y.-Z. Fu, S.-H. Chung, C. Zu, and Y.-S. Su: Rechargeable lithium-sulfur batteries. Chem. Rev. DOI: 10.1021/cr500062v (2014).

    Google Scholar 

  32. P.L. Taberna, S. Mitra, P. Poizot, P. Simon, and J.-M. Tarascon: High rate capabilities Fe304-based Cu nano-architectured electrodes for lithium-ion battery applications. Nat. Mater. 5, 567 (2006).

    Article  CAS  Google Scholar 

  33. P. Poizot, S. Lamelle, S. Grugeon, L. Dupont, and J.-M. Tarascon: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).

    Article  CAS  Google Scholar 

  34. C.K. Chan, H. Peng, G. Liu, K. Mcllwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High performance lithium battery anodes using silicon nanowires. Nat. Nanotech. 3, 31 (2008).

    Article  CAS  Google Scholar 

  35. J. Tu, Z. Zhao, L. Hu, S. Jiao, J. Hou, and H. Zhu: 3D structure through planting core-shell Si@TiN into an amorphous carbon slag: improved capacity of lithium-ion anodes. Phys. Chem. Chem. Phys. 15, 10472 (2013).

    Article  CAS  Google Scholar 

  36. S. Yoon and A. Manthiram: Sb-MOx-C (M=Al, Ti, or Mo) nanocomposite anodes for lithium-ion batteries. Chem. Mater. 21, 3898 (2009).

    Article  CAS  Google Scholar 

  37. T. Muraliganth, A. Vadivel Murugan, and A. Manthiram: Facile synthesis of carbon-decorated single-crystalline Fe3O4 nanowires and their application as high performance anode in lithium-ion batteries. Chem. Comm. 49, 7360 (2009).

    Article  CAS  Google Scholar 

  38. K.F. Zhong, X. Xia, B. Zhang, H. Li, Z.X. Wang, and L.Q. Chen: MnO powder as anode active materials for lithium ion batteries. J. Power Sources 195, 3300 (2010).

    Article  CAS  Google Scholar 

  39. J.T. Kummer: p-alumina electrolytes, in The sodium-sulfur battery, edited by J.L. Sudworth and A.R. Tilley (Chapman and Hall, London, 1985), p. 141.

    Google Scholar 

  40. J.L. Sudworth: The sodium/nickel chloride (ZEBRA) battery. J. Power Sources 100, 149 (2001).

    Article  CAS  Google Scholar 

  41. M. Skyllas-kazacos and F. Grossmith: Efficient vanadium redox flow cell. J. Electrochem. Soc. 134, 2950 (1987).

    Article  CAS  Google Scholar 

  42. S. Kim, J. Yan, B. Schwenzer, J.L. Zhang, L.Y. Li, J. Liu, Z.G. Yang, and M.A. Hickner: Investigation of sulfonated poly(phenylsulfone) membrane for vanadium redox flow batteries. Electrochem. Commun. 12, 1650 (2010).

    Article  CAS  Google Scholar 

  43. K.M. Abraham and Z. Jiang: A polymer electrolyte-based rechargeable lithium/oxygen battery. J. Electrochem. Soc. 143, 1 (1996).

    Article  CAS  Google Scholar 

  44. S.A. Freunberger, Y. Chen, Z. Peng, J.M. Griffin, L.J. Hardwick, F. Barde, P. Novak, and P.G. Bruce: Reactions in the rechargeable lithium-02 battery with alkyl carbonate electrolytes. J. Am. Chem. Soc. 133, 8040 (2011).

    Article  CAS  Google Scholar 

  45. G. Girishkumar, B. McCloskey, A.C. Luntz, S. Swanson, and W. Wilcke: Lithium-air battery: promise and challenges. J. Phys. Chem. Lett. 1, 2193 (2010).

    Article  CAS  Google Scholar 

  46. N. Xu, X. Li, X. Zhao, J.B. Goodenough, and K. Huang: A novel solid oxide redox flow battery for grid energy storage. Energy Environ. Sci. 4, 4942 (2011).

    Article  CAS  Google Scholar 

  47. T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, and A. Manthiram: Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014).

    Article  CAS  Google Scholar 

  48. L. Li, S.-H. Cai, S. Dai, and A. Manthiram: Advanced hybrid Li-air batteries with high-performance mesoporous nanocatalysts. Energy Environ. Sci. 7, 2630 (2014).

    Article  CAS  Google Scholar 

  49. S.J. Visco, Y.S. Nimon, and B.D. Katz: lonically conductive composites for protection of active metal anodes. US Patent No. 7,282,296 B2 (2007).

    Google Scholar 

  50. A. Manthiram and L. Li: Hybrid and aqueous lithium-air batteries. Adv. Energy Mater. D0l:10.1002/aenm.201401302 (2014).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award number DE-SC0005397. The authors thank Dr. Longjun Li for his assistance with the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arumugam Manthiram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goodenough, J.B., Manthiram, A. A perspective on electrical energy storage. MRS Communications 4, 135–142 (2014). https://doi.org/10.1557/mrc.2014.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.36

Navigation