Skip to main content
Log in

Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Cu2ZnSn(S,Se)4 (CZTSSe) photovoltaics (PV) have long been considered promising candidates for large-scale PV deployment due to the availability of constituent elements and steady improvements in device efficiency over time. The key limitation to high efficiency in this technology remains a deficit in the open-circuit voltage with respect to the band gap. The past decade has seen significant progress toward understanding how the various material properties such as bulk and surface composition, point defects (intrinsic and extrinsic), and grain boundaries all impact the optoelectronic properties of CZTSSe materials, and consequently device performance. This paper aims to summarize what is known about the CZTSSe bulk and surfaces, and how these material properties may be related to the Voc deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, and D.B. Mitzi: Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, (2014).

    Google Scholar 

  2. Y.S. Lee, T. Gershon, O. Gunawan, T.K. Todorov, B. Shin, Y. Virgus, and S. Guha: Cu2ZnSnSe4 thin-film solar cells by thermal co-evaporation with 11.6% power conversion efficiency and improved minority carrier diffusion length. Adv. Energy Mater. (2014), DOI: 10.1002/aenm.201401372.

    Google Scholar 

  3. T. Kato, H. Hiroi, N. Sakai, S. Muraoka, and H. Sugimoto: Characterization of front and back interfaces on Cu2ZnSnS4 thin-film solar cells. In Proc. of the 27th EU-PVSEC. Vol. 2236 (2012).

  4. D.B. Mitzi, O. Gunawan, T.K. Todorov, and D.A.R. Barkhouse: Prospects and performance limitations for Cu-Zn-Sn-S-Se photovoltaic technology. Philos. Trans. R. Soc. A 371, 20110432 (2013).

    Article  CAS  Google Scholar 

  5. N. Kohara, S. Nishiwaki, Y. Hashimoto, T. Negami, and T. Wada: Electrical properties of the Cu(In,Ga)Se2/MoSe2/Mo structure. Sol. Energy Mater. Sol. Cells 67, 209 (2001).

    Article  CAS  Google Scholar 

  6. D. Abou-Ras, G. Kostorz, D. Bremaud, M. Kalin, F. Kurdesau, A. Tiwari, and M. Döbeli: Formation and characterisation of MoSe2 for Cu(ln,Ga) Se2 based solar cells. Thin Solid Films 480, 433 (2005).

    Article  CAS  Google Scholar 

  7. O. Gunawan, T. Gokmen, and D.B. Mitzi: Suns-VOC characteristics of high performance kesterite solar cells. J. Appl. Phys. 116, (2014).

    Google Scholar 

  8. D.A.R. Barkhouse, R. Haight, N. Sakai, H. Hiroi, H. Sugimoto, and D. B. Mitzi: Cd-free buffer layer materials on Cu2ZnSn(SxSe1_x)4: Band alignments with ZnO, ZnS, and ln2S3. Appl. Phys. Lett. 100, (2012).

    Google Scholar 

  9. H. Hiroi, N. Sakai, S. Muraoka, T. Katou, and H. Sugimoto: Development of high efficiency Cu2ZnSnS4 submodule with Cd-free buffer layer. In Photovoltaic Specialists Conf. (PVSC), 2012 38th IEEE (IEEE, 2012), p. 001811.

    Chapter  Google Scholar 

  10. N. Sakai, H. Hiroi, and H. Sugimoto: Development of Cd-free buffer layer for Cu2ZnSnS4 thin-film solar cells. In Photovoltaic Specialists Conf. (PVSC), 2011 37th IEEE (IEEE, 2011), Seattle, WA, p. 003654.

    Chapter  Google Scholar 

  11. R. Haight, A. Barkhouse, O. Gunawan, B. Shin, M. Copel, M. Hopstaken, and D.B. Mitzi: Band alignment at the Cu2ZnSn(SxSe1_x)4/CdS interface. Appl. Phys. Lett. 98, (2011).

  12. J. Nelson: The Physics of Solar Cells (Imperial College Press, London, 2003).

    Book  Google Scholar 

  13. J. Kim, H. Hiroi, T.K. Todorov, O. Gunawan, M. Kuwahara, T. Gokmen, D. Nair, M. Hopstaken, B. Shin, Y.S. Lee, W. Wang, H. Sugimoto, and D.B. Mitzi: High efficiency Cu2ZnSn(S,Se)4 solar cells by applying a double ln2S3/CdS emitter. Adv. Mater. (2014). DOI: 10.1002/adma.201402373.

    Google Scholar 

  14. S. Chen, A. Walsh, X.-G. Gong, and S.-H. Wei: Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 Earth-abundant solar cell absorbers. Adv. Mater. 25, 1522 (2013).

    Article  CAS  Google Scholar 

  15. H. Katagiri, K. Jimbo, M. Tahara, H. Araki, and K. Oishi: The influence of the composition ratio on CZTS-based thin film solar cells. In MRS Proc. (Cambridge University Press, vol. 1165, 2009), p. 1165

    Article  Google Scholar 

  16. N. Vora, J. Blackburn, I. Repins, C. Beall, B. To, J. Pankow, G. Teeter, M. Young, and R. Noufi: Phase identification and control of thin films deposited by co-evaporation of elemental Cu, Zn, Sn, and Se. J. Vac. Sci. Technol. A 30, (2012).

  17. S. Chen, J.-H. Yang, X. Gong, A. Walsh, and S.-H. Wei: Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4. Phys. Rev.B 81, 245204 (2010).

    Article  CAS  Google Scholar 

  18. S. Chen, L.-W. Wang, A. Walsh, X. Gong, and S.-H. Wei: Abundance of Cuzn + SnZn and 2CuZn + SnZn defect clusters in kesterite solar cells. Appl. Phys. Lett. 101, 223901 (2012).

    Article  CAS  Google Scholar 

  19. A. Nagaoka, H. Miyake, T. Taniyama, K. Kakimoto, and K. Yoshino: Correlation between intrinsic defects and electrical properties in the high-quality Cu2ZnSnS4 single crystal. Appl. Phys. Lett. 103, 112107 (2013).

    Article  CAS  Google Scholar 

  20. D.B. Mitzi, O. Gunawan, T.K. Todorov, K. Wang, and S. Guha: The path towards a high-performance solution-processed kesterite solar cell. Sol. Energy Mater. Sol. Cells 95, 1421 (2011).

    Article  CAS  Google Scholar 

  21. O. Gunawan, Y. Virgus, and K.F. Tai: A parallel dipole line system. Appl. Phys. Lett. (2014, submitted).

    Google Scholar 

  22. S. Schorr, H.-J. Hoebler, and M. Tovar: A neutron diffraction study of the stannite-kesterite solid solution series. Eur. J. Mineral. 19, 65 (2007).

    Article  CAS  Google Scholar 

  23. B.G. Mendis, M.D. Shannon, M.C. Goodman, J.D. Major, R. Claridge, D. P. Halliday, and K. Durose: Direct observation of Cu, Zn cation disorder in Cu2ZnSnS4 solar cell absorber material using aberration corrected scanning transmission electron microscopy. Prog. Photovolt. 22, 24 (2014).

    Article  CAS  Google Scholar 

  24. S. Schorr and M. Tovar: BENSC Experimental Report. (2006).

    Google Scholar 

  25. B.I. Shklovskii and A.L. Efros: Electronic Properties of Doped Semiconductors (Springer-Verlag, Berlin Heidelberg, 1984).

    Book  Google Scholar 

  26. T. Gokmen, O. Gunawan, T.K. Todorov, and D.B. Mitzi: Band tailing and efficiency limitation in kesterite solar cells. Appl. Phys. Lett. 103, 103506 (2013).

    Article  CAS  Google Scholar 

  27. T. Gershon, B. Shin, N. Bojarczuk, T. Gokmen, S. Lu, and S. Guha: Photoluminescence characterization of a high-efficiency Cu2ZnSnS4 device. J. Appl. Phys. 114, 154905 (2013).

    Article  CAS  Google Scholar 

  28. M.J. Romero, H. Du, G. Teeter, Y. Yan, and M.M. Al-Jassim: Comparative study of the luminescence and intrinsic point defects in the kesterite Cu2ZnSnS4 and chalcopyrite Cu(In,Ga)Se2 thin films used in photovoltaic applications. Phys. Rev. B 84, 165324 (2011).

    Article  CAS  Google Scholar 

  29. T. Gershon, B. Shin, T. Gokmen, S. Lu, N. Bojarczuk, and S. Guha: Relationship between Cu2ZnSnS4 quasi donor-acceptor pair density and solar cell efficiency. Appl. Phys. Lett. 103, 193903 (2013).

    Article  CAS  Google Scholar 

  30. D.W. Miller, C.W. Warren, O. Gunawan, T. Gokmen, D.B. Mitzi, and J.D. Cohen: Electronically active defects in the Cu2ZnSn(Se,S)4 alloys as revealed by transient photocapacitance spectroscopy. Appl. Phys. Lett. 101, 142106 (2012).

    Article  CAS  Google Scholar 

  31. T. Gokmen, O. Gunawan, and D.B. Mitzi: Semi-empirical device model for Cu2ZnSn(S,Se)4 solar cells. Appl. Phys. Lett. 105, 033903 (2014).

    Article  CAS  Google Scholar 

  32. T. Washio, H. Nozaki, T. Fukano, T. Motohiro, K. Jimbo, and H. Katagiri: Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation x-ray diffraction. J. Appl. Phys. 110, 074511 (2011).

    Article  CAS  Google Scholar 

  33. W. Shockley and H.J. Queisser: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510 (1961).

    Article  CAS  Google Scholar 

  34. U. Rau and J. Werner: Radiative efficiency limits of solar cells with lateral band-gap fluctuations. Appl. Phys. Lett. 84, 3735 (2004).

    Article  CAS  Google Scholar 

  35. O. Gunawan, T. Gokmen, C.W. Warren, J.D. Cohen, T.K. Todorov, D.A. R. Barkhouse, S. Bag, J. Tang, B. Shin, and D.B. Mitzi: Electronic properties of the Cu2ZnSn(Se,S)4 absorber layer in solar cells as revealed by admittance spectroscopy and related methods. Appl. Phys. Lett. 100, 253905 (2012).

    Article  CAS  Google Scholar 

  36. H.S. Duan, W. Yang, B. Bob, C.J. Hsu, B. Lei, and Y. Yang: The role of sulfur in solution-processed Cu2ZnSn(S,Se)4 and its effect on defect properties. Adv. Funct. Mater. 23, 1466 (2013).

    Article  CAS  Google Scholar 

  37. C. Persson: Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J. Appl. Phys. 107, 053710 (2010).

    Article  CAS  Google Scholar 

  38. T. Gokmen, O. Gunawan, and D.B. Mitzi: Minority carrier diffusion length extraction in Cu2ZnSn(Se,S)4 solar cells. J. Appl. Phys. 114, 114511 (2013).

    Article  CAS  Google Scholar 

  39. O. Gunawan, T. Gokmen, and D.B. Mitzi: Copper Zinc Tin Sulphide-Based Thin Film Solar Cells (John Wiley & Sons, Hoboken, NJ, 2015).

    Google Scholar 

  40. O. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, and A. Goodrich: Co-evaporated Cu2ZnSnSe4 films and devices. Sol. Energy Mater. Sol. Cells 101, 154 (2012).

    Article  CAS  Google Scholar 

  41. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha: Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. 21, 72 (2013).

    Article  CAS  Google Scholar 

  42. M.A. Green: Accuracy of analytical expressions for solar cell fill factors. Sol. Cells 7, 337 (1982).

    Article  CAS  Google Scholar 

  43. T.K. Todorov, J. Tang, S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D. B. Mitzi: Beyond 11% efficiency: characteristics of state-of-the-art Cu2ZnSn(S,Se)4 solar cells. Adv. Energy Mater. 3, 34 (2013).

    Article  CAS  Google Scholar 

  44. R. Haight, X. Shao, W. Wang, and D.B. Mitzi: Electronic and elemental properties of the Cu2ZnSn(S,Se)4 surface and grain boundaries. Appl. Phys. Lett. 104, (2014).

  45. M. Bar, B.-A. Schubert, B. Marsen, S. Krause, S. Pookpanratana, T. Unold, L. Weinhardt, C. Heske, and H.-W. Schock: Native oxidation and Cu-poor surface structure of thin film Cu2ZnSnS4 solar cell absorbers. Appl. Phys. Lett. 99, (2011).

  46. P. Xu, S. Chen, B. Huang, H.-J. Xiang, X.-G. Gong, and S.-H. Wei: Stability and electronic structure of Cu2ZnSnS4 surfaces: first-principles study. Phys. Rev. B 88, 045427 (2013).

    Article  CAS  Google Scholar 

  47. D. Liao and A. Rockett: Cu depletion at the CulnSe2 surface. Appl. Phys. Lett. 82, 2829 (2003).

    Article  CAS  Google Scholar 

  48. D. Schmid, M. Ruckh, F. Grunwald, and H.-W. Schock: Chalcopyrite/ defect chalcopyrite heterojunctions on the basis of CulnSe2. J. Appl. Phys. 73, 2902 (1993).

    Article  CAS  Google Scholar 

  49. J.E. Jaffe and A. Zunger: Defect-induced nonpolar-to-polar transition at the surface of chalcopyrite semiconductors. Phys. Rev. B 64, 241304 (2001).

    Article  CAS  Google Scholar 

  50. D. Liao and A. Rockett: Cd doping at the CulnSe2/CdS heterojunction. J. Appl. Phys. 93, 9380 (2003).

    Article  CAS  Google Scholar 

  51. P. Migliorato, J. Shay, H. Kasper, and S. Wagner: Analysis of the electrical and luminescent properties of Cu1nSe2. J. Appl. Phys. 46, 1777 (1975).

    Article  CAS  Google Scholar 

  52. T. Maeda, S. Nakamura, and T. Wada: First-principles study on Cd doping in Cu2ZnSnS4 and Cu2ZnSnSe4. Jpn. J. Appl. Phys. 51, 10NC11 (2012).

    Article  Google Scholar 

  53. D.W. Niles, M. Al-Jassim, and K. Ramanathan: Direct observation of Na and 0 impurities at grain surfaces of CulnSe2 thin films. J. Vac. Sci. Technol A 17, 291 (1999).

    Article  CAS  Google Scholar 

  54. L. Kronik, D. Cahen, and H.W. Schock: Effects of sodium on polycrystal-line Cu(ln,Ga)Se2 and its solar cell performance. Adv. Mater. 10, 31 (1998).

    Article  CAS  Google Scholar 

  55. D. Cahen and R. Noufi: Defect chemical explanation for the effect of air anneal on CdS/CulnSe2 solar cell performance. Appl. Phys. Lett. 54, 558 (1989).

    Article  CAS  Google Scholar 

  56. A. Rockett: The effect of Na in polycrystalline and epitaxial single-crystal Culn1-x GaxSe2. Thin Solid Films 480, 2 (2005).

    Article  CAS  Google Scholar 

  57. W.H. Oo, J. Johnson, A. Bhatia, E. Lund, M. Nowell, and M. Scarpulla: Grain size and texture of Cu2ZnSnS4 thin films synthesized by cosputter-ing binary sulfides and annealing: effects of processing conditions and sodium. J. Electron. Mater. 40, 2214 (2011).

    Article  CAS  Google Scholar 

  58. T. Prabhakarand N. Jampana: Effect of sodium diffusion on the structural and electrical properties of Cu2ZnSnS4 thin films. Sol. Energy Mater. Sol. Cells 95, 1001 (2011).

    Article  CAS  Google Scholar 

  59. T. Nakada: Invited paper: CIGS-based thin film solar cells and modules: unique material properties. Electon. Mater. Lett. 8, 179 (2012).

    Article  CAS  Google Scholar 

  60. U. Rau and H.W. Schock: Electronic properties of Cu(ln,Ga)Se2 heterojunction solar cells-recent achievements, current understanding, and future challenges. Appl. Phys. A 69, 131 (1999).

    Article  CAS  Google Scholar 

  61. H. Zhou, T.-B. Song, W.-C. Hsu, S. Luo, S. Ye, H.-S. Duan, C.-J. Hsu, W. Yang, and Y. Yang: Rational defect passivation of Cu2ZnSn(S,Se)4 photovoltaics with solution-processed Cu2ZnSnS4: Na nanocrystals. J. Am. Chem. Soc. 135, 15998 (2013).

    Article  CAS  Google Scholar 

  62. A. Nagaoka, H. Miyake, T. Taniyama, K. Kakimoto, Y. Nose, M. A. Scarpulla, and K. Yoshino: Effects of sodium on electrical properties in Cu2ZnSnS4 single crystal. Appl. Phys. Lett. 104, 152101 (2014).

    Article  CAS  Google Scholar 

  63. P.T. Erslev, J.W. Lee, W.N. Shafarman, and J.D. Cohen: The influence of Na on metastable defect kinetics in CIGS materials. Thin Solid Films 517, 2277 (2009).

    Article  CAS  Google Scholar 

  64. T. Gershon, B. Shin, N. Bojarczuk, M. Hopstaken, D.B. Mitzi, and S. Guha: The role of sodium as a surfactant and suppressor of non-radiative recombination at internal surfaces in Cu2ZnSnS4. Adv. Energy Mater. (2014). DOI: 10.1002/aenm.201400849.

    Google Scholar 

  65. J.V. Li, D. Kuciauskas, M.R. Young, and I.L. Repins: Effects of sodium incorporation in Co-evaporated Cu2ZnSnSe4 thin-film solar cells. Appl. Phys. Lett. 102, 163905 (2013).

    Article  CAS  Google Scholar 

  66. T. Nakada, D. Iga, H. Ohbo, and A. Kunioka: Effects of sodium on Cu(ln,Ga) Se2-based thin films and solar cells. Jpn. J. Appl. Phys. 36, 732 (1997).

    Article  CAS  Google Scholar 

  67. M. Johnson, S. Baryshev, E. Thimsen, M. Manno, X. Zhang, I. Veryovkin, C. Leighton, and E. Aydil: Alkali-metal-enhanced grain growth in Cu2ZnSnS4 thin films. Energy Environ. Sci. 7, 1931 (2014).

    Article  CAS  Google Scholar 

  68. Y. Yan, C.-S. Jiang, R. Noufi, S.-H. Wei, H. Moutinho, and M. Al-Jassim: Electrically benign behavior of grain boundaries in polycrystalline CulnSe2 films. Phys. Rev. Lett. 99, 235504 (2007).

    Article  CAS  Google Scholar 

  69. J. Li, D.B. Mitzi, and V.B. Shenoy: Structure and electronic properties of grain boundaries in earth-abundant photovoltaic absorber Cu2ZnSnSe4. ACS Nano 5, 8613 (2011).

    Article  CAS  Google Scholar 

  70. J.B. Li, V. Chawla, and B.M. Clemens: Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. Adv. Mater. 24, 720 (2012).

    Article  CAS  Google Scholar 

  71. C.M. Sutter-Fella, J.A. Stuckelberger, H. Hagendorfer, F. La Mattina, L. Kranz, S. Nishiwaki, A.R. Uhl, Y.E. Romanyuk, and A.N. Tiwari: Sodium assisted sintering of chalcogenides and its application to solution processed Cu2ZnSn(S,Se)4 thin film solar cells. Chem. Mater. 26, 1420 (2014).

    Article  CAS  Google Scholar 

  72. V. Tomashyk, P. Feychuk, and L. Shcherbak: Ternary Alloys Based on II-VI Semiconductor Compounds (Taylor & Frances Group, Boca Raton, FL, 2014).

    Book  Google Scholar 

  73. B. Shin, Y. Zhu, N.A. Bojarczuk, S.J. Chey, and S. Guha: Control of an in-terfacial MoSe2 layer in Cu2ZnSnSe4 thin film solar cells: 8.9% power conversion efficiency with a TIN diffusion barrier. Appl. Phys. Lett. 101, 053903 (2012).

    Article  CAS  Google Scholar 

  74. Q. Shu, J.-H. Yang, S. Chen, B. Huang, H. Xiang, X.-G. Gong, and S.-H. Wei: Cu2Zn(Sn,Ge)Se4 and Cu2Zn(Sn,Si)Se4 alloys as photovoltaic materials: structural and electronic properties. Phys. Rev. 6 87, 115208 (2013).

    Article  CAS  Google Scholar 

  75. G.M. Ford, Q. Guo, R. Agrawal, and H.W. Hillhouse: Earth abundant element Cu2Zn(Sn1_xGex)S4 nanocrystals for tunable band gap solar cells: 6.8% efficient device fabrication. Chem. Mater. 23, 2626 (2011).

    Article  CAS  Google Scholar 

  76. Q. Guo, G.M. Ford, W.-C. Yang, C.J. Hages, H.W. Hillhouse, and R. Agrawal: Enhancing the performance of CZTSSe solar cells with Ge alloying. Sol. Energy Mater. Sol. Cells 105, 132 (2012).

    Article  CAS  Google Scholar 

  77. S. Bag, O. Gunawan, T. Gokmen, Y. Zhu, and D.B. Mitzi: Hydrazine-processed Ge-substituted CZTSe solar cells. Chem. Mater. 24, 4588 (2012).

    Article  CAS  Google Scholar 

  78. C. Wang, S. Chen, J.-H. Yang, L. Lang, H. Xiang, X. Gong, A. Walsh, and S.-H. Wei: Design of I2-II-IV-VI4 semiconductors through element-substitution: the thermodynamic stability limit and chemical trend. Chem. Mater. 26, 3411 (2014).

    Article  CAS  Google Scholar 

  79. J.J. Scragg, L. Choubrac, A. Lafond, T. Ericson, and C. Platzer-Bjorkman: A low-temperature order-disorder transition in Cu2ZnSnS4 thin films. Appl. Phys. Lett. 104, 041911 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The information, data, or work presented herein was funded in part by the U.S. Department of Energy, Energy Efficiency and Renewable Energy Program, under Award Number DE EE0006334. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talia Gershon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gershon, T., Gokmen, T., Gunawan, O. et al. Understanding the relationship between Cu2ZnSn(S,Se)4 material properties and device performance. MRS Communications 4, 159–170 (2014). https://doi.org/10.1557/mrc.2014.34

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.34

Navigation