Skip to main content
Log in

Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities

  • Prospective Article
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Self-assembled vertical heteroepitaxial nanostructures (VHN) in the complex oxide field have fascinated scientists for decades because they provide degrees of freedom to explore in condensed matter physics and design-coupled multifunctionlities. Recently, of particular interest is the perovskite-spinel-based VHN, covering a wide spectrum of promising applications. In this review, fabrication of VHN, their growth mechanism, control, and resulting novel multifunctionalities are discussed thoroughly, providing researchers a comprehensive blueprint to construct promising VHN. Following the fabrication section, the state-of-the-art design concepts for multifunctionalities are proposed and reviewed by suitable examples. By summarizing the outlook of this field, we are excitedly expecting this field to rise with significant contributions ranging from scientific value to practical applications in the foreseeable future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.

Similar content being viewed by others

References

  1. J.L. MacManus-Driscoll: Self-assembled heteroepitaxial oxide nanocomposite thin film structures: designing interface-induced functionality in electronic materials. Adv. Funct. Mater. 20, 2035 (2010).

    CAS  Google Scholar 

  2. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan: Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103, 031101 (2008).

    Google Scholar 

  3. R. Ramesh and N.A. Spaldin: Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21 (2007).

    CAS  Google Scholar 

  4. D.G. Schlom, L.-Q. Chen, X. Pan, A. Schmehl, and M.A. Zurbuchen: A thin film approach to engineering functionality into oxides. J. Am. Ceram. Soc. 91, 2429 (2008).

    CAS  Google Scholar 

  5. R.E. Newnham and S. Trolier-McKinstry: Crystals and composites. J. Appl. Crystallogr. 23, 447 (1990).

    CAS  Google Scholar 

  6. O.I. Lebedev, J. Verbeeck, G. Van Tendeloo, O. Shapoval, A. Belenchuk, V. Moshnyaga, B. Damashcke, and K. Samwer: Structural phase transitions and stress accommodation in (La0.67Ca0.33MnO3)1–x:(MgO)x composite films. Phys. Rev. B 66, 104421 (2002).

  7. V. Moshnyaga, B. Damaschke, O. Shapoval, A. Belenchuk, J. Faupel, O.I. Lebedev, J. Verbeeck, G. van Tendeloo, M. Mucksch, V. Tsurkan, R. Tidecks, and K. Samwer: Structural phase transition at the percolation threshold in epitaxial (La0.7Ca0.3MnO3)1–x:(MgO)x nanocomposite films. Nat. Mater. 2, 247 (2003).

    CAS  Google Scholar 

  8. H. Zheng, F. Straub, Q. Zhan, P.L. Yang, W.K. Hsieh, F. Zavaliche, Y.-H. Chu, U. Dahmen, and R. Ramesh: Self-assembled growth of BiFeO3–CoFe2O4 nanostructures. Adv. Mater. 18, 2747 (2006).

    CAS  Google Scholar 

  9. H. Zheng, J. Wang, S.E. Lofland, Z. Ma, L. Mohaddes-Ardabili, T. Zhao, L. Salamanca-Riba, S.R. Shinde, S.B. Ogale, F. Bai, D. Viehland, Y. Jia, D.G. Schlom, M. Wuttig, A. Roytburd, and R. Ramesh: Multiferroic BaTiO3–CoFe2O4 nanostructures. Science 303, 661 (2004).

    CAS  Google Scholar 

  10. H. Zheng, Q. Zhan, F. Zavaliche, M. Sherburne, F. Straub, M.P. Cruz, L.-Q. Chen, U. Dahmen, and R. Ramesh: Controlling self-assembled Perovskite-spinel nanostructures. Nano Lett. 6, 1401 (2006).

    CAS  Google Scholar 

  11. A. Chen, Z. Bi, C.-F. Tsai, J. Lee, Q. Su, X. Zhang, Q. Jia, J.L. MacManus-Driscoll, and H. Wang: Tunable low-field magnetoresistance in (La0.7Sr0.3MnO3)0.5:(ZnO)0.5 self-assembled vertically aligned nanocomposite thin films. Adv. Funct. Mater. 21, 2423 (2011).

    CAS  Google Scholar 

  12. H. Yang, H. Wang, J. Yoon, Y. Wang, M. Jain, D.M. Feldmann, P.C. Dowden, J.L. MacManus-Driscoll, and Q. Jia: Vertical interface effect on the physical properties of self-assembled nanocomposite epitaxial films. Adv. Mater. 21, 3794 (2009).

    CAS  Google Scholar 

  13. A. HarringtonSophie, J. Zhai, S. Denev, V. Gopalan, H. Wang, Z. Bi, A.T. RedfernSimon, S.-H. Baek, C.W. Bark, C.-B. Eom, Q. Jia, M.E. Vickers, and J.L. MacManus-Driscoll: Thick lead-free ferroelectric films with high Curie temperatures through nanocomposite-induced strain. Nat. Nano 6, 491 (2011).

    CAS  Google Scholar 

  14. S.-C. Liao, P.-Y. Tsai, C.-W. Liang, H.-J. Liu, J.-C. Yang, S.-J. Lin, C.-H. Lai, and Y.-H. Chu: Misorientation control and functionality design of nanopillars in self-assembled Perovskite–Spinel heteroepitaxial nanostructures. ACS Nano 5, 4118 (2011).

    CAS  Google Scholar 

  15. H.-J. Liu, L.-Y. Chen, Q. He, C.-W. Liang, Y.-Z. Chen, Y.-S. Chien, Y.-H. Hsieh, S.-J. Lin, E. Arenholz, C.-W. Luo, Y.-L. Chueh, Y.-C. Chen, and Y.-H. Chu: Epitaxial photostriction–magnetostriction coupled selfassembled nanostructures. ACS Nano 6, 6952 (2012).

    CAS  Google Scholar 

  16. N.M. Aimon, D.H. Kim, H.K. Choi, and C.A. Ross: Deposition of epitaxial BiFeO3/CoFe2O4 nanocomposites on (001) SrTiO3 by combinatorial pulsed laser deposition. Appl. Phys. Lett. 100, 092901 (2012).

    Google Scholar 

  17. R. Comes, M. Khokhlov, H. Liu, J. Lu, and S.A. Wolf: Magnetic anisotropy in composite CoFe2O4–BiFeO3 ultrathin films grown by pulsed-electron deposition. J. Appl. Phys. 111, 07D914 (2012).

    Google Scholar 

  18. M. Staruch, D. Hires, A. Chen, Z. Bi, H. Wang, and M. Jain: Enhanced lowfield magnetoresistance in La0.67Sr0.33MnO3:MgO composite films. J. Appl. Phys. 110, 113913 (2011).

    Google Scholar 

  19. Y.-H. Hsieh, H.-H. Kuo, S.-C. Liao, H.-J. Liu, Y.-J. Chen, H.-J. Lin, C.-T. Chen, C.-H. Lai, Q. Zhan, Y.-L. Chueh, and Y.-H. Chu: Tuning the formation and functionalities of ultrafine CoFe2O4 nanocrystals via interfacial coherent strain. Nanoscale 5, 6219 (2013).

    CAS  Google Scholar 

  20. D. Wu: Nucleation theory. Solid State Phys. 50, 37 (1996).

    Google Scholar 

  21. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, and V.M. Laletin: Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001).

    Google Scholar 

  22. L. Yan, F. Bai, J. Li, and D. Viehland: Nanostructures in perovskite–ferrite two-phase composite epitaxial thin films. Phil. Mag. 90, 103 (2009).

    Google Scholar 

  23. L. Yan, Y. Yang, Z. Wang, Z. Xing, J. Li, and D. Viehland: Review of magnetoelectric perovskite–spinel self-assembled nano-composite thin films. J. Mater. Sci. 44, 5080 (2009).

    CAS  Google Scholar 

  24. I. Stern, J. He, X. Zhou, P. Silwal, L. Miao, J.M. Vargas, L. Spinu, and D.H. Kim: Role of spinel substrate in the morphology of BiFeO3–CoFe2O4 epitaxial nanocomposite films. Appl. Phys. Lett. 99, 082908 (2011).

    Google Scholar 

  25. I. Levin, J. Li, J. Slutsker, and A.L. Roytburd: Design of self-assembled multiferroic nanostructures in epitaxial films. Adv. Mater. 18, 2044 (2006).

    CAS  Google Scholar 

  26. A. Artemev, J. Slutsker, and A.L. Roytburd: Phase field modeling of selfassembling nanostructures in constrained films. Acta Mater. 53, 3425 (2005).

    CAS  Google Scholar 

  27. J.L. MacManus-Driscoll, P. Zerrer, H. Wang, H. Yang, J. Yoon, A. Fouchet, R. Yu, M.G. Blamire, and Q. Jia: Strain control and spontaneous phase ordering in vertical nanocomposite heteroepitaxial thin films. Nat. Mater. 7, 314 (2008).

    CAS  Google Scholar 

  28. N. Mathur: Materials science: a desirable wind up. Nature 454, 591 (2008).

    CAS  Google Scholar 

  29. C.-W. Nan, G. Liu, Y. Lin, and H. Chen: Magnetic-field-induced electric polarization in multiferroic nanostructures. Phys. Rev. Lett. 94, 197203 (2005).

    Google Scholar 

  30. Y. Wang, J. Hu, Y. Lin, and C.-W. Nan: Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2, 61 (2010).

    Google Scholar 

  31. K.H. Sun and Y.Y. Kim: Design of magnetoelectric multiferroic heterostructures by topology optimization. J. Phys. D: Appl. Phys. 44, 185003 (2011).

    Google Scholar 

  32. G. Caruntu, A. Yourdkhani, M. Vopsaroiu, and G. Srinivasan: Probing the local strain-mediated magnetoelectric coupling in multiferroic nano-composites by magnetic field-assisted piezoresponse force microscopy. Nanoscale 4, 3218 (2012).

    CAS  Google Scholar 

  33. S.Q. Ren, L.Q. Weng, S.H. Song, F. Li, J.G. Wan, and M. Zeng: BaTiO3/CoFe2O4 particulate composites with large high frequency magnetoelectric response. J. Mater. Sci. 40, 4375 (2005).

    CAS  Google Scholar 

  34. M.V. Ramanaa, N.R. Reddy, G. Sreenivasulu, K. V.S. Kumar, B.S. Murty, and V.R.K. Murthy: Enhanced mangnetoelectric voltage in multiferroic particulate Ni0.83Co0.15Cu0.02Fe1.9O4–δ/PbZr0.52Ti0.48O3 composites—dielectric, piezoelectric and magnetic properties. Curr. Appl. Phys. 9, 1134 (2009).

    Google Scholar 

  35. D. Wu, W. Gong, H. Deng, and M. Li: Magnetoelectric composite ceramics of nickel ferrite and lead zirconate titanate via in situ processing. J. Phys. D: Appl. Phys. 40, 5002 (2007).

    CAS  Google Scholar 

  36. F. Zavaliche, H. Zheng, L. Mohaddes-Ardabili, S.Y. Yang, Q. Zhan, P. Shafer, E. Reilly, R. Chopdekar, Y. Jia, P. Wright, D.G. Schlom, Y. Suzuki, and R. Ramesh: Electric field-induced magnetization switching in epitaxial columnar nanostructures. Nano Lett. 5, 1793 (2005).

    CAS  Google Scholar 

  37. J. Slutsker, I. Levin, J. Li, A. Artemev, and A.L. Roytburd: Effect of elastic interactions on the self-assembly of multiferroic nanostructures in epitaxial films. Phys. Rev. B 73, 184127 (2006).

    Google Scholar 

  38. L.D. Landau and E.M. Liftshitz: Electrodynamics of Continuous Media (Pergamon Press, Oxford, 119, 1960).

    Google Scholar 

  39. J. Li, I. Levin, J. Slutsker, V. Provenzano, P.K. Schenck, R. Ramesh, J. Ouyang, and A.L. Roytburd: Self-assembled multiferroic nanostructures in the CoFe2O4–PbTiO3 system. Appl. Phys. Lett. 87, 072909 (2005).

    Google Scholar 

  40. C.Y. Tsai, H.R. Chen, F.C. Chang, W.C. Tsai, H.M. Cheng, Y.-H. Chu, C. H. Lai, and W.F. Hsieh: Stress-mediated magnetic anisotropy and magnetoelastic coupling in epitaxial multiferroic PbTiO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 102, 132905 (2013).

    Google Scholar 

  41. S. Ren and M. Wuttig: Spinodally synthesized magnetoelectric. Appl. Phys. Lett. 91, 083501 (2007).

    Google Scholar 

  42. J.G. Wan, X.W. Wang, Y.J. Wu, M. Zeng, Y. Wang, H. Jiang, W.Q. Zhou, G.H. Wang, and J.-M. Liu: Magnetoelectric CoFe2O4–Pb(Zr,Ti)O3 composite thin films derived by a sol–gel process. Appl. Phys. Lett. 86, 122501 (2005).

    Google Scholar 

  43. J. Zhang, H. Fu, W. Lu, J. Dai, and H.L.W. Chan: Nanoscale free-standing magnetoelectric heteropillars. Nanoscale 5, 6747 (2013).

    CAS  Google Scholar 

  44. S.P. Crane, C. Bihler, M.S. Brandt, S. T.B. Goennenwein, M. Gajek, and R. Ramesh: Tuning magnetic properties of magnetoelectric BiFeO3–NiFe2O4 nanostructures. J. Magn. Magn. Mater. 321, L5 (2009).

    CAS  Google Scholar 

  45. Q. Zhan, R. Yu, S.P. Crane, H. Zheng, C. Kisielowski, and R. Ramesh: Structure and interface chemistry of perovskite–spinel nanocomposite thin films. Appl. Phys. Lett. 89, 172902 (2006).

    Google Scholar 

  46. Y.-H. Chu, Q. Zhan, L.W. Martin, M.P. Cruz, P.L. Yang, G.W. Pabst, F. Zavaliche, S.Y. Yang, J.X. Zhang, L.Q. Chen, D.G. Schlom, I.N. Lin, T.B. Wu, and R. Ramesh: Nanoscale domain control in multiferroic BiFeO3 thin films. Adv. Mater. 18, 2307 (2006).

    CAS  Google Scholar 

  47. G.W. Pabst, L.W. Martin, Y.-H. Chu, and R. Ramesh: Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007).

    Google Scholar 

  48. L. Yan, Z. Xing, Z. Wang, T. Wang, G. Lei, J. Li, and D. Viehland: Direct measurement of magnetoelectric exchange in self-assembled epitaxial BiFeO3–CoFe2O4 nanocomposite thin films. Appl. Phys. Lett. 94, 192902 (2009).

    Google Scholar 

  49. Y.S. Oh, S. Crane, H. Zheng, Y.-H. Chu, R. Ramesh, and K.H. Kim: Quantitative determination of anisotropic magnetoelectric coupling in BiFeO3–CoFe2O4 nanostructures. Appl. Phys. Lett. 97, 052902 (2010).

    Google Scholar 

  50. F. Zavaliche, T. Zhao, H. Zheng, F. Straub, M.P. Cruz, P.L. Yang, D. Hao, and R. Ramesh: Electrically assisted magnetic recording in multiferroic nanostructures. Nano Lett. 7, 1586 (2007).

    CAS  Google Scholar 

  51. T. Zhao, A. Scholl, F. Zavaliche, H. Zheng, M. Barry, A. Doran, K. Lee, M. P. Cruz, and R. Ramesh: Nanoscale x-ray magnetic circular dichroism probing of electric-field-induced magnetic switching in multiferroic nanostructures. Appl. Phys. Lett. 90, 123104 (2007).

    Google Scholar 

  52. Y.-J. Chen, Y.-H. Hsieh, S.-C. Liao, Z. Hu, M.-J. Huang, W.-C. Kuo, Y.-Y. Chin, T.-M. Uen, J.-Y. Juang, C.-H. Lai, H.-J. Lin, C.-T. Chen, and Y.-H. Chu: Strong magnetic enhancement in self-assembled multiferroicferrimagnetic nanostructures. Nanoscale 5, 4449 (2013).

    CAS  Google Scholar 

  53. N. Dix, R. Muralidharan, J. Guyonnet, B. Warot-Fonrose, M. Varela, P. Paruch, F. Sánchez, and J. Fontcuberta: On the strain coupling across vertical interfaces of switchable BiFeO3–CoFe2O4 multiferroic nanostructures. Appl. Phys. Lett. 95, 062907 (2009).

    Google Scholar 

  54. S.V. Kalinin, A.N. Morozovska, L.Q. Chen, and B.J. Rodriguez: Local polarization dynamics in ferroelectric materials. Rep. Prog. Phys. 73, 056502 (2010).

    Google Scholar 

  55. B.J. Rodriguez, S. Jesse, A.P. Baddorf, T. Zhao, Y.-H. Chu, R. Ramesh, E.A. Eliseev, A.N. Morozovska, and S.V. Kalinin: Spatially resolved mapping of ferroelectric switching behavior in self-assembled multiferroic nanostructures: strain, size, and interface effects. Nanotechnology 18, 405701 (2007).

    Google Scholar 

  56. P. Poosanaas, K. Tonooka, and K. Uchino: Photostrictive actuators. Mechatronics 10, 467 (2000).

    Google Scholar 

  57. K. Uchino and M. Aizawa: Photostrictive actuator using PLZT ceramics. Japan. J. Appl. Phys. 24S3, 139 (1985).

    Google Scholar 

  58. C.v.K. Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, and M. Alexe: Strain propagation in nanolayered perovskites probed by ultrafast x-ray diffraction. Phys. Rev. B 73, 212202 (2006).

    Google Scholar 

  59. C.v.K. Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, and M. Alexe: Coupled ultrafast lattice and polarization dynamics in ferroelectric nanolayers. Phys. Rev. Lett. 98, 257601 (2007).

    Google Scholar 

  60. C.v.K. Schmising, A. Harpoeth, N. Zhavoronkov, Z. Ansari, C. Aku-Leh, M. Woerner, T. Elsaesser, M. Bargheer, M. Schmidbauer, I. Vrejoiu, D. Hesse, and M. Alexe: Ultrafast magnetostriction and phononmediated stress in a photoexcited ferromagnet. Phys. Rev. B 78, 060404R (2008).

    Google Scholar 

  61. C.v.K. Schmising, M. Bargheer, M. Kiel, N. Zhavoronkov, M. Woerner, T. Elsaesser, I. Vrejoiu, D. Hesse, and M. Alexe: Ultrafast structure and polarization dynamics in nanolayered perovskites studied by femtosecond X-ray diffraction. J. Phys.: Conf. Ser. 92, 012177 (2007).

    Google Scholar 

  62. N. Driza, S. Blanco-Canosa, M. Bakr, S. Soltan, M. Khalid, L. Mustafa, K. Kawashima, G. Christiani, H.U. Habermeier, G. Khaliullin, C. Ulrich, M. Le Tacon, and B. Keimer: Long-range transfer of electron–phonon coupling in oxide superlattices. Nat. Mater. 11, 675 (2012).

    CAS  Google Scholar 

  63. S. Heinze, H.-U. Habermeier, G. Cristiani, S.B. Canosa, M.L. Tacon, and B. Keimer: Thermoelectric properties of YBa2Cu3O7–δ–La2/3Ca1/3MnO3 superlattices. Appl. Phys. Lett. 101, 131603 (2012).

    Google Scholar 

  64. J.G. Bednorz and K.A. Müller: Possible high TC superconductivity in the Ba–La–Cu–O system. Z. Phys. B: Condens. Matter 64, 189 (1986).

    CAS  Google Scholar 

  65. D. Larbalestier, A. Gurevich, D.M. Feldmann, and A. Polyanskii: High-TC superconducting materials for electric power applications. Nature 414, 368 (2001).

    CAS  Google Scholar 

  66. B. Dam, J.M. Huijbregtse, F.C. Klaassen, R.C.F. van der Geest, G. Doornbos, J.H. Rector, A.M. Testa, S. Freisem, J.C. Martinez, B. Stauble-Pumpin, and R. Griessen: Origin of high critical currents in YBa2Cu3O7–δ superconducting thin films. Nature 399, 439 (1999).

    CAS  Google Scholar 

  67. T. Matsushita: Flux pinning in superconducting 123 materials. Supercond. Sci. Technol. 13, 730 (2000).

    CAS  Google Scholar 

  68. J.L. MacManus-Driscoll, S.R. Foltyn, Q.X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M.E. Hawley, M.P. Maley, and D.E. Peterson: Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7–x + BaZrO3. Nat. Mater. 3, 439 (2004).

    CAS  Google Scholar 

  69. T. Haugan, P.N. Barnes, R. Wheeler, F. Meisenkothen, and M. Sumption: Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7–x superconductor. Nature 430, 867 (2004).

    CAS  Google Scholar 

  70. A. Goyal, S. Kang, K.J. Leonard, P.M. Martine, A.A. Gapud, M. Varela, M. Paranthaman, A.O. Ijaduola, E.D. Specht, J.R. Thompson, D. K. Chrhten, S.J. Pennycook, and F.A. List: Irradiation-free, columnar defects comprised of self-assembled nanodots and nanorods resulting in strongly enhanced flux-pinning in YBa2Cu3O7–δ films. Supercond. Sci. Technol. 18, 1533 (2005).

    CAS  Google Scholar 

  71. S. Lee, J. Jiang, Y. Zhang, C.W. Bark, J.D. Weiss, C. Tarantini, C.T. Nelson, H.W. Jang, C.M. Folkman, S.H. Baek, A. Polyanskii, D. Abraimov, A. Yamamoto, J.W. Park, X.Q. Pan, E.E. Hellstrom, D.C. Larbalestier, and C.B. Eom: Template engineering of co-doped BaFe2As2 single-crystal thin films. Nat. Mater. 9, 397 (2010).

    CAS  Google Scholar 

  72. S. Lee, C. Tarantini, P. Gao, J. Jiang, J.D. Weiss, F. Kametani, C.M. Folkman, Y. Zhang, X.Q. Pan, E.E. Hellstrom, D.C. Larbalestier, and C.B. Eom: Artificially engineered superlattices of pnictide superconductors. Nat. Mater. 12, 392 (2013).

    CAS  Google Scholar 

  73. W.D.J. Callister: Materials Science and Engineering: An Introduction, 7th ed. (Wiley, 2006) p. 110,129.

    Google Scholar 

  74. E. Dagotto: Complexity in strongly correlated electronic systems. Science 309, 257 (2005).

    CAS  Google Scholar 

  75. J. Mannhart and D.G. Schlom: Oxide interfaces—an opportunity for electronics. Science 327, 1607 (2010).

    CAS  Google Scholar 

  76. W.-I. Liang, Y. Liu, S.-C. Liao, W.-C. Wang, H.-J. Liu, H.-J. Lin, C.-T. Chen, C.-H. Lai, A. Borisevich, E. Arenholz, J. Li, and Y.-H. Chu: Design magnetoelectric coupling in a self-assembled epitaxial nanocomposite via chemical interaction. J. Mater. Chem. C, 2, 811 (2014)

    CAS  Google Scholar 

  77. P.P. Hankare, R.P. Patil, U.B. Sankpal, S.D. Jadhav, I.S. Mulla, K. M. Jadhav, and B.K. Chougule: Magnetic and dielectric properties of nanophase manganese-substituted lithium ferrite. J. Magn. Magn. Mater. 321, 3270 (2009).

    CAS  Google Scholar 

  78. C. Zener: Interaction between the d shells in the transition metals. Phys. Rev. 81, 440 (1951).

    CAS  Google Scholar 

  79. S. Jin, T.H. Tiefel, M. McCormack, R.A. Fastnacht, R. Ramesh, and L.H. Chen: Thousandfold change in resistivity in magnetoresistive La–Ca–Mn–O films. Science 264, 413 (1994).

    CAS  Google Scholar 

  80. G.J. Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, and T.H. Geballe: Intrinsic electrical transport and magnetic properties of La0.67Ca0.33MnO3 and La0.67Sr0.33MnO3 MOCVD thin films and bulk material. Phys. Rev. B 53, 14434 (1996).

    CAS  Google Scholar 

  81. R. Gross, L. Alff, B. Büchner, B.H. Freitag, C. Höfener, J. Klein, Y. Lu, W. Mader, J.B. Philipp, M.S.R. Rao, P. Reutler, S. Ritter, S. Thienhaus, S. Uhlenbruck, and B. Wiedenhorst: Physics of grain boundaries in the colossal magnetoresistance manganites. J. Magn. Magn. Mater. 211, 150 (2000).

    CAS  Google Scholar 

  82. Y.H. Huang, M. Karppinen, H. Yamauchi, and J.B. Goodenough: Effect of high-pressure annealing on magnetoresistance in manganese perovskites. J. Appl. Phys. 98, 033911 (2005).

    Google Scholar 

  83. H.Y. Hwang, S.W. Cheong, N.P. Ong, and B. Batlogg: Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996).

    CAS  Google Scholar 

  84. H.-J. Liu, V.-T. Tra, Y.-J. Chen, R. Huang, C.-G. Duan, Y.-H. Hsieh, H.-J. Lin, J.-Y. Lin, C.-T. Chen, Y. Ikuhara, and Y.-H. Chu: Large magnetoresistance in magnetically coupled SrRuO3–CoFe2O4 self-assembled nanostructures. Adv. Mater. 25, 4753 (2013).

    CAS  Google Scholar 

  85. V.V. Pokropivny and V.V. Skorokhod: New dimensionality classifications of nanostructures. Physica E 40, 2521 (2008).

    CAS  Google Scholar 

  86. Y.-H. Hsieh, J.-M. Liou, B.-C. Huang, C.-W. Liang, Q. He, Q. Zhan, Y.-P. Chiu, Y.-C. Chen, and Y.-H. Chu: Local conduction at the BiFeO3–CoFe2O4 tubular oxide interface. Adv. Mater. 24, 4564 (2012).

    CAS  Google Scholar 

  87. F. Vidal, P. Schio, N. Keller, Y. Zheng, D. Demaille, F.J. Bonilla, J. Milano, and A.J.A. de Oliveira: Magneto-optical study of slanted Co nanowires embedded in CeO2/SrTiO3(0 01). Physica B 407, 3070 (2012).

    CAS  Google Scholar 

  88. F. Vidal, Y. Zheng, J. Milano, D. Demaille, P. Schio, E. Fonda, and B. Vodungbo: Nanowires formation and the origin of ferromagnetism in a diluted magnetic oxide. Appl. Phys. Lett. 95, 152510 (2009).

    Google Scholar 

  89. R. Comes, H. Liu, M. Khokhlov, R. Kasica, J. Lu, and S.A. Wolf: Directed self-assembly of epitaxial CoFe2O4–BiFeO3 multiferroic nanocomposites. Nano Lett. 12, 2367 (2012).

    CAS  Google Scholar 

  90. W. Lee, H. Han, A. Lotnyk, M.A. Schubert, S. Senz, M. Alexe, D. Hesse, S. Baik, and U. Gösele: Individually addressable epitaxial ferroelectric nanocapacitor arrays with near Tb inch–2 density. Nat. Nanotechnol. 3, 402 (2008).

    CAS  Google Scholar 

  91. S.A. Wolf, L. Jiwei, M.R. Stan, E. Chen, and D.M. Treger: The promise of nanomagnetics and spintronics for future logic and universal memory. Proc. IEEE 98, 2155 (2010).

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Council, Republic of China (NSC-101-2119-M-009-003-MY2), Ministry of Education (MOE-ATU 101W961), and Center for Interdisciplinary Science of National Chiao Tung University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Hao Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, HJ., Liang, WI., Chu, YH. et al. Self-assembled vertical heteroepitaxial nanostructures: from growth to functionalities. MRS Communications 4, 31–44 (2014). https://doi.org/10.1557/mrc.2014.13

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2014.13

Navigation