Skip to main content
Log in

Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies

  • Research Letters
  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Solid oxide fuel cells (SOFCs) are attractive for clean and efficient electricity generation, but high operating temperatures (Top > 800 °C) limit their widespread usage. Oxygen ion conducting cathode materials (mixed ion-electron conductors, MIECs), such as La1−xSrxCo1−yFeyO3 (LSCF), enable lower Top by reducing cathode polarization losses. Understanding how composition affects oxygen diffusion in LaFeO3 is vitally important for designing high-performance LSCF cathodes. To do this, we employ first-principles density functional theory plus U (DFT+U) calculations to show how lanthanum vacancies in LaFeO3 dramatically change the oxygen diffusion coefficient. Our ab initio results show that A-site substoichiometry is a viable route to increased oxygen diffusion and higher SOFC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. N.Q. Minh: Ceramic fuel cells. J. Am. Ceram. Soc. 76, 563–588 (1993).

    Article  CAS  Google Scholar 

  2. S.B. Adler: Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chem. Rev. 104, 4791–4844 (2004).

    CAS  Google Scholar 

  3. B.C.H. Steele and A. Heinzel: Materials for fuel-cell technologies. Nature 414, 345–352 (2001).

    Article  CAS  Google Scholar 

  4. K. Huang, J. Wan, and J.B. Goodenough: Oxide-ion conducting ceramics for solid oxide fuel cells. J. Mater. Sci. 36, 1093–1098 (2001).

    Article  CAS  Google Scholar 

  5. D. Rembelski, J.P. Viricelle, L. Combemale, and M. Rieu: Characterization and comparison of different cathode materials for SC-SOFC: LSM, BSCF, SSC, and LSCF. Fuel Cells 12, 256–264 (2012).

    Article  CAS  Google Scholar 

  6. M.M. Kuklja, E.A. Kotomin, R. Merkle, Y.A. Mastrikov, and J. Maier: Combined theoretical and experimental analysis of processes determining cathode performance in solid oxide fuel cells. Phys. Chem. Chem. Phys. 15, 5443–5471 (2013).

    Article  CAS  Google Scholar 

  7. Z. Lu, J. Hardy, J. Templeton, and J. Stevenson: Extended reaction zone of La0.6Sr0.4Co0.2Fe0.8O3 cathode for solid oxide fuel cell. J. Power Sources 198, 90–94 (2012).

    Article  CAS  Google Scholar 

  8. T. Striker, J. Ruud, Y. Gao, W. Heward, and C. Steinbruchel: A-site deficiency, phase purity and crystal structure in lanthanum strontium ferrite powders. Solid State Ionics 178, 1326–1336 (2007).

    Article  CAS  Google Scholar 

  9. Y.-L. Lee, J. Kleis, J. Rossmeisl, and D. Morgan: Ab initio energetics of LaBO3 (001) (B = Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes. Phys. Rev. B 80, 224101 (2009).

    Article  Google Scholar 

  10. M. Pavone, A.M. Ritzmann, and E.A. Carter: Quantum-mechanics-based design principles for solid oxide fuel cell cathode materials. Energy Env. Sci. 4, 4933–4937 (2011).

    Article  CAS  Google Scholar 

  11. A. Jones and M.S. Islam: Atomic-scale insight into LaFeO3 Perovskite: defect nanoclusters and ion migration. J. Phys. Chem. C 112, 4455–4462 (2008).

    Article  CAS  Google Scholar 

  12. A.M. Ritzmann, A.B. Muñoz-García, M. Pavone, J.A. Keith, and E.A. Carter: Ab initio DFT + U analysis of oxygen vacancy formation and migration in La1-xSrxFeO3-d (x = 0, 0.25, 0.50). Chem. Mater., in press (2013) doi: 10.1021/cm401052w.

    Google Scholar 

  13. Y.A. Mastrikov, R. Merkle, E.A. Kotomin, M.A. Kuklja, and J. Maier: Formation and migration of oxygen vacancies in La1-xSrxCo1-yFeyO3-d: insight from ab initio calculations and comparison with Ba1-xSrxCo1-yFeyO3-d. Phys. Chem. Chem. Phys. 15, 911–918 (2013).

    Article  CAS  Google Scholar 

  14. J. Mizusaki, M. Yoshihiro, S. Yamauchi, and K. Fueki: Nonstoichiometry and defect structure of the perovskite-type oxides La1-xSrxFeO3-d. J. Solid State Chem. 58, 257–266 (1985).

    Article  CAS  Google Scholar 

  15. V.I. Anisimov, J. Zaanen, and O.K. Andersen: Band theory and Mott insulators–Hubbard-U instead of Stoner-I. Phys. Rev. B 44, 943–954 (1991).

    Article  CAS  Google Scholar 

  16. N.J. Mosey, P. Liao, and E.A. Carter: Rotationally invariant ab initio evaluation of Coulomb and exchange parameters for DFT + U calculations. J. Chem. Phys 129, 014103 (2008).

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  18. G. Kresse and J. Furthmüller: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  19. R.F.W. Bader: Atoms in Molecules: A Quantum Theory (Oxford University Press, New York, 1994).

    Google Scholar 

  20. Wolfram Research, Inc.; Mathematica Version 9.0 (Champaign, IL, 2013).

    Google Scholar 

  21. T. Ishigaki, S. Yamauchi, J. Mizusaki, K. Fueki, H. Naito, and T. Adachi: Diffusion of oxide ions in LaFeO3 single crystal. J. Solid State Chem. 55, 50–53 (1984).

    Article  CAS  Google Scholar 

  22. K.A. Marino and E.A. Carter: First-principles characterization of Ni diffusion kinetics in ß-NiAl. Phys. Rev. B 78, 184105 (2008).

    Article  Google Scholar 

  23. A.B. Muñoz-García, M. Pavone, A.M. Ritzmann, and E.A. Carter: Oxide ion transport in Sr2Fe1.5Mo0.5O6-d, a mixed ion-electron conductor: new insights from first principles modeling. Phys. Chem. Chem. Phys. 15, 6250–6259 (2013).

    Article  Google Scholar 

  24. M. Marezio and P.D. Dernier: The bond lengths in LaFeO3, MRS Bull. 6, 23–29 (1971).

    Article  CAS  Google Scholar 

  25. K. Momma and F. Izumi: VESTA: a three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653–658 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

HeteroFoaM, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under the award DE-SC0001061 provided funding for this work. The simulations carried out in this work were performed (in part) on computational resources supported by the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of Information Technology’ s High Performance Computing Center at Princeton University. Research was carried out in part at the Center for Functional Nanomaterials, Brookhaven National Laboratory, which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02-98CH10886.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily A. Carter.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit {rs|http://dx.doi.org/10.1557/mrc.2013.28|url|}

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ritzmann, A.M., Muñoz-García, A.B., Pavone, M. et al. Ab initio evaluation of oxygen diffusivity in LaFeO3: the role of lanthanum vacancies. MRS Communications 3, 161–166 (2013). https://doi.org/10.1557/mrc.2013.28

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2013.28

Navigation