Skip to main content
Log in

Zn-Ni-Co-O wide-band-gap p-type conductive oxides with high work functions

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

Co3O4-based spinels are a new class of wide-band-gap p-type conductive oxides with high work functions. We examined the structures, conductivities, work functions, and optical spectra of quaternary Zn-Ni-Co-0 thin films across the entire spinel region of the ZnO-NiO-Co3O4 diagram using a high-throughput combinatorial approach. We found that the conductivity of as-deposited films is maximized (100 S/cm) and optical absorption (at 1.8 eV) is minimized in different regions of the diagram, while the work function of annealed films is high and relatively constant (5.8 ± 0.1 eV). These properties made Zn-Ni-Co-O thin films applicable as p-type interlayers in solar cells. As an example, amorphous Zn-Co-0 hole transport layers had good performance in bulk heterojunction organic photovoltaic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono: P-type electrical conduction in transparent thin films of CuAlO2. Nature 389, 939 (1997).

    Article  CAS  Google Scholar 

  2. H. Hosono, Y. Ogo, H. Yanagi, and T. Kamiya: Bipolar conduction in SnO thin films. Electrochem. Solid-State Lett. 14, H13 (2011).

    Article  CAS  Google Scholar 

  3. H. Sato, T. Minami, S. Takata, and T. Yamada: Transparent conducting p-type NiO thin films prepared by magnetron sputtering. Thin Solid Films 236, 27 (1993).

    Article  CAS  Google Scholar 

  4. H. Mizoguchi, M. Hirano, S. Fujitsu, T. Takeuchi, K. Ueda, and H. Hosono: ZnRh2O4: a p-type semiconducting oxide with a valence band composed of a low spin state of Rh3+ in a 4d6 configuration. Appl. Phys. Lett. 80, 1207 (2002).

    Article  CAS  Google Scholar 

  5. J.F. Wager, D.A. Keszler, and R.E. Presley: Transparent Electronics Springer, New York, 2008).

    Google Scholar 

  6. J. Tate, P.F. Newhouse, R. Kykyneshi, P.A. Hersh, J. Kinney, D. H. McIntyre, and D.A. Keszler: Chalcogen-based transparent conductors. Thin Solid Films 516, 5795 (2008).

    Article  CAS  Google Scholar 

  7. K. Ueda, H. Hiramatsu, M. Hirano, T. Kamiya, and H. Hosono: Wide-gap layered oxychalcogenide semiconductors: materials, electronic structures and optoelectronic properties. Thin Solid Films 496, 8 (2006).

    Article  CAS  Google Scholar 

  8. O. Knop, K.I.G. Reid, R. Sutarno, and Y. Nakagawa: Chalkogenides of the transition elements. VI. X-ray, neutron, and magnetic investigation of the spinels CO3O4, NiCo2O4, Co3S4, and NiCo2S4. Can. J. Chem. 46, 3463 (1968).

    Article  CAS  Google Scholar 

  9. K. Krezhov and P. Konstantinov: On the cationic distribution in zinc-cobalt oxide spinels. J. Phys: Condens. Matters, 9287 (1993).

    Google Scholar 

  10. R.R. Owings, G.J. Exarhos, C.F. Windisch, P.H. Holloway, and J.G. Wen: Process enhanced polaron conductivity of infrared transparent nickel-cobalt oxide. Thin Solid Films 483, 175 (2005).

    Article  CAS  Google Scholar 

  11. M. Dekkers, G. Rijnders, and D.H.A. Blank: Znlr2O4, a p-type transparent oxide semiconductor in the class of spinel zinc-d6-transition metal oxide. Appl. Phys. Lett. 90, 021903 (2007).

    Article  CAS  Google Scholar 

  12. S. Kim, J.A. Cianfrone, P. Sadik, K.-W. Kim, M. Mil, and D.P. Norton: Room temperature deposited oxide p-n junction using p-type zinc-cobalt-oxide. J. Appl. Phys. 107, 103538 (2010).

    Article  CAS  Google Scholar 

  13. J.D. Perkins, T.R. Paudel, A. Zakutayev, P. Ndione, P.A. Parilla, S. Lany, D.S. Ginley, A. Zunger, N.H. Perry, T.O. Mason, J.S. Bettinger, Y. Shi, and M.F. Toney: Hole doping in ternary oxides: enhancing p-type conductivity in cobalt oxide spinels, unpublished.

  14. J.D. Perkins, J.A. del Cueto, J.L. Alleman, C. Warmsingh, B.M. Keyes, L.M. Gedvilas, P.A. Parilla, B. To, D.W. Reade, and D.S. Ginley: Combinatorial studies of Zn-AI-O and Zn-Sn-O transparent conducting oxide thin films. Thin Solid Films 411, 152 (2002).

    Article  CAS  Google Scholar 

  15. A. Zakutayev, T. Paudel, J. Perkins, S. Lany, A. Zunger, and D. Ginley: Cation off-stoichiometry leads to p-type self-doping and enhanced transparency in Co2ZnO4 and Co2NiO4 spinels, unpublished.

  16. K.J. Kim and Y.R. Park: Optical investigation of charge-transfer transitions in spinel Co3O4. Solid State Commun. 127, 25 (2003).

    Article  CAS  Google Scholar 

  17. Y. Tang, M.A. Grayson, N.H. Perry, T.O. Mason, P.F. Ndione, A. Zakutayev, J.D. Perkins, and D.S. Ginley, unpublished.

  18. K.X. Steirer, J.P. Chesin, N.E. Widjonarko, J.J. Berry, A. Miedaner, D. S. Ginley, and D.C. Olson: Solution deposited NiO thin-films as hole transport layers in organic photovoltaics. Org. Electron. 11, 1414 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported as part of two Energy Frontier Research Centers funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences: Center for Inverse Design (CID) under Contract No. DE-AC36-08GO28308 to NREL (A.Z., J.D.P., D.S.G.) and Center for Interface Science: Solar-Electric Materials (CIS: SEM) under Award No. DE-SC0001084 (A.K.S., N.E.W., J. J.B.). P.A.P. received support from the US DOE Office of Energy Efficiency and Renewable Energy, Solar Energy Technology Program. A.Z., J.D.P., and D.S.G. would like to thank Tula Paudel, Stephan Lany, and Alex Zunger at NREL for numerous fruitful discussions. A.K.S., N.E.W., and J.J.B. thank Jennifer Leisch for initial work on amorphous ZnCoO.

A.Z. grew and characterized polycrystalline Zn-Ni-Co-O samples and wrote the paper with contributions, suggestions, and comments from J.D.P., P.A.P., N.E.W., A.K.S., J.J.B., and D.S.G. N.E.W., A.K.S., and J.J.B. were responsible for amorphous ZnCoO hole transport layer deposition, characterization, and OPV device fabrication/analysis. J.D.P. and P.A.P. assisted with automation of combinatorial data collection and automation of the analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Zakutayev.

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2011.9

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zakutayev, A., Perkins, J.D., Parilla, P.A. et al. Zn-Ni-Co-O wide-band-gap p-type conductive oxides with high work functions. MRS Communications 1, 23–26 (2011). https://doi.org/10.1557/mrc.2011.9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2011.9

Navigation