Skip to main content
Log in

Low-voltage organic transistor with subfemtoliter inkjet source-drain contacts

  • Published:
MRS Communications Aims and scope Submit manuscript

Abstract

We have successfully achieved a transconductance of 0.76 S/m for organic thin-film transistors with 4 V operation, which is the largest value reported for organic transistors fabricated using printing methods. Using a subfemtoliter inkjet, silver electrodes with a line width of 1 urn and a channel length of 1 urn were printed directly onto an air-stable, high-mobility organic semiconductor that was deposited on a single-molecule self-assembled monolayer-based gate dielectric. On reducing the droplet volume (0.5 fl) ejected from the inkjet nozzle, which reduces sintering temperatures down to 90°C, the inkjet printing of silver electrodes was accomplished without damage to the organic semiconductor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. B.J. Gans and U.S. Schubert: Inkjet printing of well-defined polymer dots and arrays. Langmuir 20, 7789 (2004).

    Article  CAS  Google Scholar 

  2. T. Kawase, S. Moriya, C.J. Newsome, and T. Shimoda: Inkjet printing of polymeric field-effect transistors and its applications. Jpn. J. Appl. Phys. 44, 3649 (2005).

    Article  CAS  Google Scholar 

  3. Y. Noguchi, T. Sekitani, T. Yokota, and T. Someya: Direct inkjet printing of silver electrodes on organic semiconductors for thin-film transistors with top contact geometry. Appl. Phys. Lett. 93, 043303 (2008).

    Article  CAS  Google Scholar 

  4. A.F. Vornbrock, D. Sung, H. Kang, R. Kitsomboonloha, and V. Subramanian: Fully gravure and ink-jet printed high speed pBTTT organic thin film transistors. Org. Electronics. 11, 2037 (2010).

    Article  CAS  Google Scholar 

  5. H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E.P. Woo: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).

    Article  CAS  Google Scholar 

  6. Y. Noguchi, T. Sekitani, and T. Someya: Organic-transistor-based flexible pressure sensors using ink-jet-printed electrodes and gate dielectric layers. Appl. Phys. Lett. 89, 253507 (2006).

    Article  CAS  Google Scholar 

  7. D. Kim, S. Jeong, S. Lee, B.K. Park, and J. Moon: Organic thin film transistor using silver electrodes by the ink-jet printing technology. Thin Solid Films 515, 7692 (2007).

    Article  CAS  Google Scholar 

  8. H. Yan, Z. Chen, Y. Zheng, C. Newman, J.R. Quinn, F. Dotz, M. Kastler, and A. Facchetti: A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679 (2009).

    Article  CAS  Google Scholar 

  9. Y.Y. Noh, N. Zhao, M. Caironi, and H. Sirringhaus: Downscaling of self-aligned, all-printed polymer thin-film transistors. Nat. Nanotechnol. 2, 784 (2007).

    Article  CAS  Google Scholar 

  10. J.U. Park, M. Hardy, S.J. Kang, K. Barton, K. Adair, D.K. Mukhopadhyay, C.Y. Lee, M.S. Strano, A.G. Alleyne, J.G. Georgiadis, P.M. Ferreira, and J.A. Rogers: High-resolution electrohydrodynamic jet printing. Nat. Mater. 6, 782 (2007).

    Article  CAS  Google Scholar 

  11. T. Sekitani, Y. Noguchi, U. Zschieschang, H. Klauk, and T. Someya: Organic transistors manufactured using inkjet technology with subfemto-liter accuracy. Proc. Natl. Acad. Sci. U.S.A. 105, 4976 (2008).

    Article  Google Scholar 

  12. F. Ante, D. Kalblein, U. Zschieschang, T.W. Canzler, A. Werner, K. Takimiya, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk: Contact doping and ultrathin gate dielectrics for nanoscale organic thin-film transistors. Small 7, 1186 (2011).

    Article  CAS  Google Scholar 

  13. J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He, M.J. Renn, T.P. Lodge, and C. D. Frisbie: Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistors on plastic. Nat Mater. 7, 900 (2008).

    Article  CAS  Google Scholar 

  14. H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik: Ultralow-power organic complementary circuits. Nature 445, 745 (2007).

    Article  CAS  Google Scholar 

  15. K. Fukuda, T. Hamamoto, T. Yokota, T. Sekitani, U. Zschieschang, H. Klauk, and T. Someya: Effects of the alkyl chain length in phosphonic acid self-assembled monolayer gate dielectrics on the performance and stability of low-voltage organic thin-film transistors. Appl. Phys. Lett. 95, 203301 (2009).

    Article  CAS  Google Scholar 

  16. T. Yamamoto and K. Takimiya: Facile synthesis of highly π-extended het-eroarenes, dinaphtho[2,3-b:2′,3′-f]chalcogenopheno[3,2-b]chalcogen-ophenes, and their application to field-effect transistors. J. Am. Chem. Soc. 129, 2224 (2007).

    Article  CAS  Google Scholar 

  17. Y. Taur, G.J. Hu, R.H. Dennard, L.M. Terman, C.Y. Ting, and K.E. Petrillo: A self-aligned 1-µm-channel CMOS technology with retrograde n-well and thin epitaxy. IEEE Trans. Electr. Dev. 32, 203 (1985).

    Article  Google Scholar 

  18. D.J. Gundlach, L. Zhou, J.A. Nichols, T.N. Jackson, P.V. Necliudov, and M.S. Shur: An experimental study of contact effects in organic thin film transistors. J. Appl. Phys. 100, 024509 (2006).

    Article  CAS  Google Scholar 

  19. S. Narioka, H. Ishii, D. Yoshimura, M. Sei, Y. Ouchi, K. Seki, S. Hasegawa, T. Miyazaki, Y. Harima, and K. Yamashita: The electronic structure and energy level alignment of porphyrin/metal interfaces studied by ultraviolet photoelectron spectroscopy. Appl. Phys. Lett. 67, 1899 (1995).

    Article  CAS  Google Scholar 

  20. D. Kim, S. Jeong, H. Shin, Y. Xia, and J. Moon: Heterogeneous interfacial properties of ink-jet-printed silver nanoparticulate electrode and organic semiconductor. Adv. Mater. 20, 3084 (2008).

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Y. Noguchi, K. Fukuda, and T. Nakagawa for fruitful discussions and technical support. This work was partially supported by JST/CREST, Special Coordination Funds for Promoting, and NEDO. One of the authors (T.Y.) is grateful to the research fellowships for young scientists of JSPS.

Author information

Authors and Affiliations

Authors

Supplementary materials

Supplementary materials

For supplementary material for this article, please visit http://dx.doi.org/10.1557/mrc.2011.4

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, T., Sekitani, T., Kato, Y. et al. Low-voltage organic transistor with subfemtoliter inkjet source-drain contacts. MRS Communications 1, 3–6 (2011). https://doi.org/10.1557/mrc.2011.4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/mrc.2011.4

Navigation