Skip to main content
Log in

Inorganic dissolvable electronics: materials and devices for biomedicine and environment

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent advancement of inorganic dissolvable electronics nucleates around a realization that single-crystal silicon nanomembrane undergoes hydrolysis in biologically relevant conditions. The silicon-based high-performance dissolvable electronic devices are initially conceived for biomedical implants that function for a programmed timeframe followed by a complete dissolution to eliminate the need for recollection. The technology developed for biomedicine also presents unique opportunities in security devices that physically destruct and in environmentally benign electronics that dissolve without a trace to reduce electronic wastes. The new class of devices with this emerging technology complements the existing efforts in organic biodegradable devices. Compatible with state-of-the-art fabrication facilities for commercial microelectronics, the technology has a huge potential for future commercialization. This mini review will first discuss the relevant materials for the inorganic dissolvable electronics and then present the demonstrated applications in functional devices, followed by a perspective for the future developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. M.R. Bristow, L.A. Saxon, J. Boehmer, S. Krueger, D.A. Kass, T. De Marco, P. Carson, L. DiCarlo, D. DeMets, B.G. White, D.W. DeVries, and A.M. Feldman: Comparison of medical therapy and I. Defibrillation in heart failure: Cardiac-resynchronization therapy with or without an implantable defibrillator in advanced chronic heart failure. N. Engl. J. Med. 350 (21), 2140 (2004).

    Article  CAS  Google Scholar 

  2. E.A. Rose, A.C. Gelijns, A.J. Moskowitz, D.F. Heitjan, L.W. Stevenson, W. Dembitsky, J.W. Long, D.D. Ascheim, A.R. Tierney, R.G. Levitan, J.T. Watson, P. Meier, N.S. Ronan, P.A. Shapiro, R.M. Lazar, L.W. Miller, L. Gupta, O.H. Frazier, P. Desvigne-Nickens, M.C. Oz, and V.L. Poirier: Randomized evaluation of mechanical assistance for the treatment of congestive heart failure study: Long-term use of a left ventricular assist device for end-stage heart failure. N. Engl. J. Med. 345 (20), 1435 (2001).

    Article  CAS  Google Scholar 

  3. W. Irnich: Electronic security systems and active implantable medical devices. Pacing Clin. Electrophysiol. 25 (8), 1235 (2002).

    Article  Google Scholar 

  4. M. Vallet-Regi, F. Balas, and D. Arcos: Mesoporous materials for drug delivery. Angew. Chem., Int. Ed. Engl. 46 (40), 7548 (2007).

    Article  CAS  Google Scholar 

  5. D.A. LaVan, T. McGuire, and R. Langer: Small-scale systems for in vivo drug delivery. Nat. Biotechnol. 21 (10), 1184 (2003).

    Article  CAS  Google Scholar 

  6. D.F. Williams: On the mechanisms of biocompatibility. Biomaterials 29 (20), 2941 (2008).

    Article  CAS  Google Scholar 

  7. M.A. Lebedev and M.A. Nicolelis: Brain-machine interfaces: Past, present and future. Trends Neurosci. 29 (9), 536 (2006).

    Article  CAS  Google Scholar 

  8. P.J. Rousche, D.S. Pellinen, D.P. Pivin, Jr., J.C. Williams, R.J. Vetter, and D.R. Kipke: Flexible polyimide-based intracortical electrode arrays with bioactive capability. IEEE Trans. Biomed. Eng. 48 (3), 361 (2001).

    Article  CAS  Google Scholar 

  9. C.K. Colton: Implantable biohybrid artificial organs. Cell Transplant. 4 (4), 415 (1995).

    Article  CAS  Google Scholar 

  10. A. Lendlein and R. Langer: Biodegradable, elastic shape-memory polymers for potential biomedical applications. Science 296 (5573), 1673 (2002).

    Article  Google Scholar 

  11. K.S. Soppimath, T.M. Aminabhavi, A.R. Kulkarni, and W.E. Rudzinski: Biodegradable polymeric nanoparticles as drug delivery devices. J. Controlled Release 70 (1–2), 1 (2001).

    Article  CAS  Google Scholar 

  12. K.R. Kamath and K. Park: Biodegradable hydrogels in drug-delivery. Adv. Drug Delivery Rev. 11 (1–2), 59 (1993).

    Article  CAS  Google Scholar 

  13. I.S. Tobias, H. Lee, G.C. Engelmayr, Jr., D. Macaya, C.J. Bettinger, and M.J. Cima: Zero-order controlled release of ciprofloxacin-HCl from a reservoir-based, bioresorbable and elastomeric device. J Controlled Release 146 (3), 356 (2010).

    Article  CAS  Google Scholar 

  14. M. Peuster, P. Wohlsein, M. Brugmann, M. Ehlerding, K. Seidler, C. Fink, H. Brauer, A. Fischer, and G. Hausdorf: A novel approach to temporary stenting: Degradable cardiovascular stents produced from corrodible metal—Results 6–18 months after implantation into New Zealand white rabbits. Heart 86 (5), 563 (2001).

    Article  CAS  Google Scholar 

  15. M. Moravej and D. Mantovani: Biodegradable metals for cardiovascular stent application: Interests and new opportunities. Int. J. Mol. Sci. 12 (7), 4250 (2011).

    Article  CAS  Google Scholar 

  16. T. Cavusoglu, R. Yavuzer, Y. Basterzi, S. Tuncer, and O. Latifoglu: Resorbable plate-screw systems: Clinical applications. Ulus Travma Acil Cerrahi Derg. 11 (1), 43 (2005).

    Google Scholar 

  17. K.K. Fu, Z.Y. Wang, J.Q. Dai, M. Carter, and L.B. Hu: Transient electronics: Materials and devices. Chem. Mater. 28 (11), 3527 (2016).

    Article  CAS  Google Scholar 

  18. H. Cheng and V. Vepachedu: Recent development of transient electronics. Theor. Appl. Mech. Lett. 6 (1), 21 (2016).

    Article  Google Scholar 

  19. Y. Zhang, B. Lu, H. Xu, and X. Feng: Recent progress in transient electronics. Sci. Sin.-Phys. Mech. Astron. 46 (4), 44605 (2016).

    Article  Google Scholar 

  20. D.-H. Kim, Y.-S. Kim, J. Amsden, B. Panilaitis, D.L. Kaplan, F.G. Omenetto, M.R. Zakin, and J.A. Rogers: Erratum: Silicon electronics on silk as a path to bioresorbable, implantable devices. Appl Phys Lett. 95, 133701 (2009).

    Article  CAS  Google Scholar 

  21. C.J. Bettinger and Z. Bao: Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 22 (5), 651 (2010).

    Article  CAS  Google Scholar 

  22. D.H. Kim, J. Viventi, J.J. Amsden, J. Xiao, L. Vigeland, Y.S. Kim, J.A. Blanco, B. Panilaitis, E.S. Frechette, D. Contreras, D.L. Kaplan, F.G. Omenetto, Y. Huang, K.C. Hwang, M.R. Zakin, B. Litt, and J.A. Rogers: Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9 (6), 511 (2010).

    Article  CAS  Google Scholar 

  23. P.B. Nery, R. Fernandes, G.M. Nair, G.L. Sumner, C.S. Ribas, S.M.D. Menon, X. Wang, A.D. Krahn, C.A. Morillo, and S.J. Connolly: Device-related infection among patients with pacemakers and implantable defibrillators: Incidence, risk factors, and Consequences. J. Cardiovasc. Electrophysiol. 21 (7), 786 (2010).

    Google Scholar 

  24. S.W. Hwang, H. Tao, D.H. Kim, H. Cheng, J.K. Song, E. Rill, M.A. Brenckle, B. Panilaitis, S.M. Won, Y.S. Kim, Y.M. Song, K.J. Yu, A. Ameen, R. Li, Y. Su, M. Yang, D.L. Kaplan, M.R. Zakin, M.J. Slepian, Y. Huang, F.G. Omenetto, and J.A. Rogers: A physically transient form of silicon electronics. Science 337 (6102), 1640 (2012).

    Article  CAS  Google Scholar 

  25. A. Carlson, A.M. Bowen, Y. Huang, R.G. Nuzzo, and J.A. Rogers: Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24 (39), 5284 (2012).

    Article  CAS  Google Scholar 

  26. A. Carlson, S.D. Wang, P. Elvikis, P.M. Ferreira, Y.G. Huang, and J.A. Rogers: Active, programmable elastomeric surfaces with tunable adhesion for deterministic assembly by transfer printing. Adv. Funct. Mater. 22 (21), 4476 (2012).

    Article  CAS  Google Scholar 

  27. A. Carlson, H.J. Kim-Lee, J. Wu, P. Elvikis, H.Y. Cheng, A. Kovalsky, S. Elgan, Q.M. Yu, P.M. Ferreira, Y.G. Huang, K.T. Turner, and J.A. Rogers: Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl. Phys. Lett. 98 (26), 264104 (2011).

    Article  CAS  Google Scholar 

  28. S.Y. Yang, A. Carlson, H. Cheng, Q. Yu, N. Ahmed, J. Wu, S. Kim, M. Sitti, P.M. Ferreira, Y. Huang, and J.A. Rogers: Elastomer surfaces with directionally dependent adhesion strength and their use in transfer printing with continuous roll-to-roll applications. Adv Mater. 24 (16), 2117 (2012).

    Article  CAS  Google Scholar 

  29. X. Feng, H. Cheng, A.M. Bowen, A.W. Carlson, R.G. Nuzzo, and J.A. Rogers: A finite-deformation mechanics theory for kinetically controlled transfer printing. J. Appl. Mech. 80 (6), 061023 (2013).

    Article  Google Scholar 

  30. S. Kim, A. Carlson, H.Y. Cheng, S. Lee, J.K. Park, Y.G. Huang, and J.A. Rogers: Enhanced adhesion with pedestal-shaped elastomeric stamps for transfer printing. Appl. Phys. Lett. 100 (17), 171909 (2012).

    Article  CAS  Google Scholar 

  31. S.K. Kang, R.K. Murphy, S.W. Hwang, S.M. Lee, D.V. Harburg, N.A. Krueger, J. Shin, P. Gamble, H. Cheng, S. Yu, Z. Liu, J.G. McCall, M. Stephen, H. Ying, J. Kim, G. Park, R.C. Webb, C.H. Lee, S. Chung, D.S. Wie, A.D. Gujar, B. Vemulapalli, A.H. Kim, K.M. Lee, J. Cheng, Y. Huang, S.H. Lee, P.V. Braun, W.Z. Ray, and J.A. Rogers: Bioresorbable silicon electronic sensors for the brain. Nature 530 (7588), 71 (2016).

    Article  CAS  Google Scholar 

  32. K.J. Yu, D. Kuzum, S.W. Hwang, B.H. Kim, H. Juul, N.H. Kim, S.M. Won, K. Chiang, M. Trumpis, A.G. Richardson, H. Cheng, H. Fang, M. Thompson, H. Bink, D. Talos, K.J. Seo, H.N. Lee, S.K. Kang, J.H. Kim, J.Y. Lee, Y. Huang, F.E. Jensen, M.A. Dichter, T.H. Lucas, J. Viventi, B. Litt, and J.A. Rogers: Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15 (7), 782 (2016).

    Article  CAS  Google Scholar 

  33. Y.H. Jung, T.H. Chang, H. Zhang, C. Yao, Q. Zheng, V.W. Yang, H. Mi, M. Kim, S.J. Cho, D.W. Park, H. Jiang, J. Lee, Y. Qiu, W. Zhou, Z. Cai, S. Gong, and Z. Ma: High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun. 6, 7170 (2015).

    Article  Google Scholar 

  34. B.H. Robinson: E-waste: An assessment of global production and environmental impacts. Sci. Total Environ. 408 (2), 183 (2009).

    Article  CAS  Google Scholar 

  35. C.H. Lee, J.W. Jeong, Y.H. Liu, Y.H. Zhang, Y. Shi, S.K. Kang, J. Kim, J.S. Kim, N.Y. Lee, B.H. Kim, K.I. Jang, L. Yin, M.K. Kim, A. Banks, U. Paik, Y.G. Huang, and J.A. Rogers: Materials and wireless microfluidic systems for electronics capable of chemical dissolution on demand. Adv. Funct. Mater. 25 (9), 1338 (2015).

    Article  CAS  Google Scholar 

  36. F. Xu, T.J. Lu, K.A. Seffen, and E.Y.K. Ng: Mathematical modeling of skin bioheat transfer. Appl. Mech. Rev. 62 (5), 050801 (2009).

    Article  Google Scholar 

  37. D. Schmaljohann: Thermo- and pH-responsive polymers in drug delivery. Adv. Drug Delivery Rev. 58 (15), 1655 (2006).

    Article  CAS  Google Scholar 

  38. S.W. Hwang, G. Park, H. Cheng, J.K. Song, S.K. Kang, L. Yin, J.H. Kim, F.G. Omenetto, Y. Huang, K.M. Lee, and J.A. Rogers: 25th anniversary article: Materials for high-performance biodegradable semiconductor devices. Adv Mater. 26 (13), 1992 (2014).

    Article  CAS  Google Scholar 

  39. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline-solutions. 1. Orientation dependence and behavior of passivation layers. J. Electrochem. Soc. 137 (11), 3612 (1990).

    Article  CAS  Google Scholar 

  40. H.Y. Cheng, J. Wu, Q.M. Yu, H.J. Kim-Lee, A. Carlson, K.T. Turner, K.C. Hwang, Y.G. Huang, and J.A. Rogers: An analytical model for shear-enhanced adhesiveless transfer printing. Mech. Res. Commun. 43, 46 (2012).

    Article  Google Scholar 

  41. L. Yin, A.B. Farimani, K. Min, N. Vishal, J. Lam, Y.K. Lee, N.R. Aluru, and J.A. Rogers: Mechanisms for hydrolysis of silicon nanomembranes as used in bioresorbable electronics. Adv. Mater. 27 (11), 1857 (2015).

    Article  CAS  Google Scholar 

  42. S.W. Hwang, G. Park, C. Edwards, E.A. Corbin, S.K. Kang, H. Cheng, J.K. Song, J.H. Kim, S. Yu, J. Ng, J.E. Lee, J. Kim, C. Yee, B. Bhaduri, Y. Su, F.G. Omennetto, Y. Huang, R. Bashir, L. Goddard, G. Popescu, K.M. Lee, and J.A. Rogers: Dissolution chemistry and biocompatibility of single-crystalline silicon nanomembranes and associated materials for transient electronics. ACS Nano 8 (6), 5843 (2014).

    Article  CAS  Google Scholar 

  43. H. Seidel, L. Csepregi, A. Heuberger, and H. Baumgartel: Anisotropic etching of crystalline silicon in alkaline-solutions. 2. Influence of dopants. J. Electrochem. Soc. 137 (11), 3626 (1990).

    Article  CAS  Google Scholar 

  44. S.K. Kang, G. Park, K. Kim, S.W. Hwang, H.Y. Cheng, J.H. Shin, S.J. Chung, M. Kim, L. Yin, J.C. Lee, K.M. Lee, and J.A. Rogers: Dissolution chemistry and biocompatibility of silicon- and germanium-based semiconductors for transient electronics. ACS Appl. Mater. Interfaces 7 (17), 9297 (2015).

    Article  CAS  Google Scholar 

  45. M.E. Roberts, S.C. Mannsfeld, N. Queraltó, C. Reese, J. Locklin, W. Knoll, and Z. Bao: Water-stable organic transistors and their application in chemical and biological sensors. Proc. Natl. Acad. Sci. 105 (34), 12134 (2008).

    Article  CAS  Google Scholar 

  46. M. Irimia-Vladu, E.D. Glowacki, G. Voss, S. Bauer, and N.S. Sariciftci: Green and biodegradable electronics. Mater. Today 15 (7–8), 340 (2012).

    Article  CAS  Google Scholar 

  47. M. Irimia-Vladu, E.D. Głowacki, P.A. Troshin, G. Schwabegger, L. Leonat, D.K. Susarova, O. Krystal, M. Ullah, Y. Kanbur, and M.A. Bodea: Indigo-a natural pigment for high performance ambipolar organic field effect transistors and circuits. Adv. Mater. 24 (3), 375 (2012).

    Article  CAS  Google Scholar 

  48. M. Irimia-Vladu, P.A. Troshin, M. Reisinger, L. Shmygleva, Y. Kanbur, G. Schwabegger, M. Bodea, R. Schwödiauer, A. Mumyatov, and J.W. Fergus: Biocompatible and biodegradable materials for organic field-effect transistors. Adv. Funct. Mater. 20 (23), 4069 (2010).

    Article  CAS  Google Scholar 

  49. C. Dagdeviren, S.W. Hwang, Y. Su, S. Kim, H. Cheng, O. Gur, R. Haney, F.G. Omenetto, Y. Huang, and J.A. Rogers: Transient, biocompatible electronics and energy harvesters based on ZnO. Small 9 (20), 3398 (2013).

    Article  CAS  Google Scholar 

  50. C. Liu: Foundations of MEMS (Upper Saddle River, Pearson Education, 2012).

  51. M. Irimia-Vladu: “Green” electronics: Biodegradable and biocompatible materials and devices for sustainable future. Chem. Soc. Rev. 43 (2), 588 (2014).

    Article  CAS  Google Scholar 

  52. C. Zhong, J. Wu, C. Reinhart-King, and C. Chu: Synthesis, characterization and cytotoxicity of photo-crosslinked maleic chitosan–polyethylene glycol diacrylate hybrid hydrogels. Acta Biomater. 6 (10), 3908 (2010).

    Article  CAS  Google Scholar 

  53. C. Zhong, Y. Deng, A.F. Roudsari, A. Kapetanovic, M.P. Anantram, and M. Rolandi: A polysaccharide bioprotonic field-effect transistor. Nat Commun. 2, 476 (2011).

    Article  CAS  Google Scholar 

  54. A.N. Zelikin, D.M. Lynn, J. Farhadi, I. Martin, V. Shastri, and R. Langer: Erodible conducting polymers for potential biomedical applications. Angew. Chem., Int. Ed. Engl. 41 (1), 141 (2002).

    Article  CAS  Google Scholar 

  55. T.J. Rivers, T.W. Hudson, and C.E. Schmidt: Synthesis of a novel, biodegradable electrically conducting polymer for biomedical applications. Adv. Funct. Mater. 12 (1), 33 (2002).

    Article  CAS  Google Scholar 

  56. M. Muskovich and C.J. Bettinger: Biomaterials-based electronics: polymers and interfaces for biology and medicine. Adv. Healthcare Mater. 1 (3), 248 (2012).

    Article  CAS  Google Scholar 

  57. P. Trumbo, A.A. Yates, S. Schlicker, and M. Poos: Dietary reference intakes: Vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. J. Am. Diet. Assoc. 101 (3), 294 (2001).

    Article  CAS  Google Scholar 

  58. Y. Zheng, X. Gu, and F. Witte: Biodegradable metals. Mater. Sci. Eng. R Rep. 77, 1 (2014).

    Article  Google Scholar 

  59. L. Yin, H.Y. Cheng, S.M. Mao, R. Haasch, Y.H. Liu, X. Xie, S.W. Hwang, H. Jain, S.K. Kang, Y.W. Su, R. Li, Y.G. Huang, and J.A. Rogers: Dissolvable metals for transient electronics. Adv. Funct. Mater. 24 (5), 645 (2014).

    Article  CAS  Google Scholar 

  60. M. Anik and K. Osseo-Asare: Effect of pH on the anodic behavior of tungsten. J. Electrochem. Soc. 149 (6), B224 (2002).

    Article  CAS  Google Scholar 

  61. G. Song and S. Song: A possible biodegradable magnesium implant material. Adv. Eng. Mater. 9 (4), 298 (2007).

    Article  CAS  Google Scholar 

  62. Z.J. Li, X.N. Gu, S.Q. Lou, and Y.F. Zheng: The development of binary Mg–Ca alloys for use as biodegradable materials within bone. Biomaterials 29 (10), 1329 (2008).

    Article  CAS  Google Scholar 

  63. R.W. Revie and H.H. Uhlig: Uhlig’s Corrosion Handbook (Hoboken, John Wiley & Sons, 2011).

    Book  Google Scholar 

  64. R. Li, H. Cheng, Y. Su, S-W. Hwang, L. Yin, H. Tao, M.A. Brenckle, D-H. Kim, F.G. Omenetto, J.A. Rogers, and Y. Huang: An analytical model of reactive diffusion for transient electronics. Adv. Funct. Mater. 23 (24), 3106 (2013).

    Article  CAS  Google Scholar 

  65. P.V. Danckwerts: Absorption by simultaneous diffusion and chemical reaction. Trans. Faraday Soc. 46 (4–5), 300 (1950).

    Article  CAS  Google Scholar 

  66. S.W. Hwang, J.K. Song, X. Huang, H. Cheng, S.K. Kang, B.H. Kim, J.H. Kim, S. Yu, Y. Huang, and J.A. Rogers: High-performance biodegradable/transient electronics on biodegradable polymers. Adv Mater. 26 (23), 3905 (2014).

    Article  CAS  Google Scholar 

  67. D.H. Kim, J. Song, W.M. Choi, H.S. Kim, R.H. Kim, Z. Liu, Y.Y. Huang, K.C. Hwang, Y.W. Zhang, and J.A. Rogers: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc. Natl. Acad. Sci. U. S. A. 105 (48), 18675 (2008).

    Article  CAS  Google Scholar 

  68. D.H. Kim, J.H. Ahn, W.M. Choi, H.S. Kim, T.H. Kim, J. Song, Y.Y. Huang, Z. Liu, C. Lu, and J.A. Rogers: Stretchable and foldable silicon integrated circuits. Science 320 (5875), 507 (2008).

    Article  CAS  Google Scholar 

  69. M. Ying, A.P. Bonifas, N. Lu, Y. Su, R. Li, H. Cheng, A. Ameen, Y. Huang, and J.A. Rogers: Silicon nanomembranes for fingertip electronics. Nanotechnology 23 (34), 344004 (2012).

    Article  CAS  Google Scholar 

  70. R.C. Webb, A.P. Bonifas, A. Behnaz, Y. Zhang, K.J. Yu, H. Cheng, M. Shi, Z. Bian, Z. Liu, Y.S. Kim, W.H. Yeo, J.S. Park, J. Song, Y. Li, Y. Huang, A.M. Gorbach, and J.A. Rogers: Ultrathin conformal devices for precise and continuous thermal characterization of human skin. Nat. Mater. 12 (10), 938 (2013).

    Article  CAS  Google Scholar 

  71. L. Xu, S.R. Gutbrod, A.P. Bonifas, Y. Su, M.S. Sulkin, N. Lu, H.J. Chung, K.I. Jang, Z. Liu, M. Ying, C. Lu, R.C. Webb, J.S. Kim, J.I. Laughner, H. Cheng, Y. Liu, A. Ameen, J.W. Jeong, G.T. Kim, Y. Huang, I.R. Efimov, and J.A. Rogers: 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  CAS  Google Scholar 

  72. S.K. Kang, S.W. Hwang, S. Yu, J.H. Seo, E.A. Corbin, J. Shin, D.S. Wie, R. Bashir, Z. Ma, and J.A. Rogers: Biodegradable thin metal foils and spin-on glass materials for transient electronics. Adv. Funct. Mater. 25 (12), 1789 (2015).

    Article  CAS  Google Scholar 

  73. L.S. Nair and C.T. Laurencin: Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32 (8–9), 762 (2007).

    Article  CAS  Google Scholar 

  74. H.Y. Tian, Z.H. Tang, X.L. Zhuang, X.S. Chen, and X.B. Jing: Biodegradable synthetic polymers: Preparation, functionalization and biomedical application. Prog. Polym. Sci. 37 (2), 237 (2012).

    Article  CAS  Google Scholar 

  75. S. Khanra, T. Cipriano, T. Lam, T.A. White, E.E. Fileti, W.A. Alves, and S. Guha: Self-assembled peptide–polyfluorene nanocomposites for biodegradable organic electronics. Adv. Mater. Interfaces 2 (14), 1500265 (2015).

    Article  CAS  Google Scholar 

  76. J.M. Anderson and M.S. Shive: Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv. Drug Delivery Rev. 64, 72 (2012).

    Article  Google Scholar 

  77. J.C. Middleton and A.J. Tipton: Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21 (23), 2335 (2000).

    Article  CAS  Google Scholar 

  78. X. Hu, K. Shmelev, L. Sun, E-S. Gil, S-H. Park, P. Cebe, and D.L. Kaplan: Regulation of silk material structure by temperature-controlled water vapor annealing. Biomacromolecules 12 (5), 1686 (2011).

    Article  CAS  Google Scholar 

  79. X. Wang, J.A. Kluge, G.G. Leisk, and D.L. Kaplan: Sonication-induced gelation of silk fibroin for cell encapsulation. Biomaterials 29 (8), 1054 (2008).

    Article  CAS  Google Scholar 

  80. L. Zhang, Z. Cao, T. Bai, L. Carr, J-R. Ella-Menye, C. Irvin, B.D. Ratner, and S. Jiang: Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31 (6), 553 (2013).

    Article  CAS  Google Scholar 

  81. Y.J. Kim, S.E. Chun, J. Whitacre, and C.J. Bettinger: Self-deployable current sources fabricated from edible materials. J. Mater. Chem. B 1 (31), 3781 (2013).

    Article  CAS  Google Scholar 

  82. J.W. Chang, C.G. Wang, C.Y. Huang, T.D. Tsai, T.F. Guo, and T.C. Wen: Chicken albumen dielectrics in organic field-effect transistors. Adv Mater. 23 (35), 4077 (2011).

    Article  CAS  Google Scholar 

  83. M.M. Hamedi, A. Ainla, F. Guder, D.C. Christodouleas, M.T. Fernandez-Abedul, and G.M. Whitesides: Integrating electronics and microfluidics on paper. Adv Mater. 28 (25), 5054 (2016).

    Article  CAS  Google Scholar 

  84. U. Zschieschang, T. Yamamoto, K. Takimiya, H. Kuwabara, M. Ikeda, T. Sekitani, T. Someya, and H. Klauk: Organic electronics on banknotes. Adv Mater. 23 (5), 654 (2011).

    Article  CAS  Google Scholar 

  85. A. Russo, B.Y. Ahn, J.J. Adams, E.B. Duoss, J.T. Bernhard, and J.A. Lewis: Pen-on-paper flexible electronics. Adv Mater. 23 (30), 3426 (2011).

    Article  CAS  Google Scholar 

  86. L. Nyholm, G. Nystrom, A. Mihranyan, and M. Stromme: Toward flexible polymer and paper-based energy storage devices. Adv Mater. 23 (33), 3751 (2011).

    CAS  Google Scholar 

  87. D. Tobjork and R. Osterbacka: Paper electronics. Adv Mater. 23 (17), 1935 (2011).

    Article  CAS  Google Scholar 

  88. H.L. Zhu, Z.G. Xiao, D.T. Liu, Y.Y. Li, N.J. Weadock, Z.Q. Fang, J.S. Huang, and L.B. Hu: Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 6 (7), 2105 (2013).

    Article  CAS  Google Scholar 

  89. J. Huang, H. Zhu, Y. Chen, C. Preston, K. Rohrbach, J. Cumings, and L. Hu: Highly transparent and flexible nanopaper transistors. ACS Nano 7 (3), 2106 (2013).

    Article  CAS  Google Scholar 

  90. J. Jin, D. Lee, H.G. Im, Y.C. Han, E.G. Jeong, M. Rolandi, K.C. Choi, and B.S. Bae: Chitin nanofiber transparent paper for flexible green electronics. Adv Mater. 28 (26), 5169 (2016).

    Article  CAS  Google Scholar 

  91. S.K. Kang, S.W. Hwang, H.Y. Cheng, S. Yu, B.H. Kim, J.H. Kim, Y.G. Huang, and J.A. Rogers: Dissolution behaviors and applications of silicon oxides and nitrides in transient electronics. Adv. Funct. Mater. 24 (28), 4427 (2014).

    Article  CAS  Google Scholar 

  92. P.V. Brady and J.V. Walther: Kinetics of quartz dissolution at low-temperatures. Chem. Geol. 82 (3–4), 253 (1990).

    Article  CAS  Google Scholar 

  93. L. Bergstrom and E. Bostedt: Surface-chemistry of silicon-nitride powders—Electrokinetic behavior and ESCA studies. Colloids Surf. 49 (3–4), 183 (1990).

    Article  Google Scholar 

  94. A.A. Dameron, S.D. Davidson, B.B. Burton, P.F. Carcia, R.S. McLean, and S.M. George: Gas diffusion barriers on polymers using multilayers fabricated by Al2O3 and rapid SiO2 atomic layer deposition. J. Phys. Chem. C 112 (12), 4573 (2008).

    Article  CAS  Google Scholar 

  95. M.A. Brenckle, H. Cheng, S. Hwang, H. Tao, M. Paquette, D.L. Kaplan, J.A. Rogers, Y. Huang, and F.G. Omenetto: Modulated degradation of transient electronic devices through multilayer silk fibroin pockets. ACS Appl. Mater. Interfaces 7 (36), 19870 (2015).

    Article  CAS  Google Scholar 

  96. H. Acar, S. Çınar, M. Thunga, M.R. Kessler, N. Hashemi, and R. Montazami: Study of physically transient insulating materials as a potential platform for transient electronics and bioelectronics. Adv. Funct. Mater. 24 (26), 4135 (2014).

    Article  CAS  Google Scholar 

  97. S.W. Hwang, X. Huang, J.H. Seo, J.K. Song, S. Kim, S. Hage-Ali, H.J. Chung, H. Tao, F.G. Omenetto, Z. Ma, and J.A. Rogers: Materials for bioresorbable radio frequency electronics. Adv. Mater. 25 (26), 3526 (2013).

    Article  CAS  Google Scholar 

  98. S.W. Hwang, D.H. Kim, H. Tao, T.i. Kim, S. Kim, K.J. Yu, B. Panilaitis, J.W. Jeong, J.K. Song, and F.G. Omenetto: Materials and fabrication processes for transient and bioresorbable high-performance electronics. Adv. Funct. Mater. 23 (33), 4087 (2013).

    Article  CAS  Google Scholar 

  99. S.H. Jin, J. Shin, I-T. Cho, S.Y. Han, D.J. Lee, C.H. Lee, J-H. Lee, and J.A. Rogers: Solution-processed single-walled carbon nanotube field effect transistors and bootstrapped inverters for disintegratable, transient electronics. Appl. Phys. Lett. 105 (1), 013506 (2014).

    Article  CAS  Google Scholar 

  100. S.W. Hwang, C.H. Lee, H. Cheng, J.W. Jeong, S.K. Kang, J.H. Kim, J. Shin, J. Yang, Z. Liu, G.A. Ameer, Y. Huang, and J.A. Rogers: Biodegradable elastomers and silicon nanomembranes/nanoribbons for stretchable, transient electronics, and biosensors. Nano Lett. 15 (5), 2801 (2015).

    Article  CAS  Google Scholar 

  101. L. Yin, X. Huang, H. Xu, Y. Zhang, J. Lam, J. Cheng, and J.A. Rogers: Materials, designs, and operational characteristics for fully biodegradable primary batteries. Adv. Mater. 26 (23), 3879 (2014).

    Article  CAS  Google Scholar 

  102. M. Tsang, A. Armutlulu, F. Herrault, R.H. Shafer, S.A.B. Allen, and M.G. Allen: Development of electroplated magnesium microstructures for biodegradable devices and energy sources. J. Microelectromech. Syst. 23 (6), 1281 (2014).

    Article  CAS  Google Scholar 

  103. C.M. Boutry, A. Nguyen, Q.O. Lawal, A. Chortos, S. Rondeau-Gagne, and Z. Bao: A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 27 (43), 6954 (2015).

    Article  CAS  Google Scholar 

  104. F. Sammoura, K.B. Lee, and L.W. Lin: Water-activated disposable and long shelf life microbatteries. Sensor. Actuator. Phys. 111 (1), 79 (2004).

    Article  CAS  Google Scholar 

  105. S. Xu, Y. Zhang, J. Cho, J. Lee, X. Huang, L. Jia, J.A. Fan, Y. Su, J. Su, H. Zhang, H. Cheng, B. Lu, C. Yu, C. Chuang, T.I. Kim, T. Song, K. Shigeta, S. Kang, C. Dagdeviren, I. Petrov, P.V. Braun, Y. Huang, U. Paik, and J.A. Rogers: Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat. Commun. 4, 1543 (2013).

    Article  CAS  Google Scholar 

  106. K.K. Fu, Z. Wang, C. Yan, Z. Liu, Y. Yao, J. Dai, E. Hitz, Y. Wang, W. Luo, and Y. Chen: All-component transient lithium-ion batteries. Adv. Energy Mater. 6 (10), 1502496 (2016).

    Article  CAS  Google Scholar 

  107. J.S. Ho, A.J. Yeh, E. Neofytou, S. Kim, Y. Tanabe, B. Patlolla, R.E. Beygui, and A.S. Poon: Wireless power transfer to deep-tissue microimplants. Proc. Natl. Acad. Sci. 111 (22), 7974 (2014).

    Article  CAS  Google Scholar 

  108. H. Tao, S.W. Hwang, B. Marelli, B. An, J.E. Moreau, M. Yang, M.A. Brenckle, S. Kim, D.L. Kaplan, J.A. Rogers, and F.G. Omenetto: Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement. Proc. Natl. Acad. Sci. U. S. A. 111 (49), 17385 (2014).

    Article  CAS  Google Scholar 

  109. F.G. Omenetto and D.L. Kaplan: New opportunities for an ancient material. Science 329 (5991), 528 (2010).

    Article  CAS  Google Scholar 

  110. A.C.R. Grayson, I.S. Choi, B.M. Tyler, P.P. Wang, H. Brem, M.J. Cima, and R. Langer: Multi-pulse drug delivery from a resorbable polymeric microchip device. Nat. Mater. 2 (11), 767 (2003).

    Article  CAS  Google Scholar 

  111. S.W. Hwang, S.K. Kang, X. Huang, M.A. Brenckle, F.G. Omenetto, and J.A. Rogers: Materials for programmed, functional transformation in transient electronic systems. Adv. Mater. 27 (1), 47 (2015).

    Article  CAS  Google Scholar 

  112. C.H. Lee, S.K. Kang, G.A. Salvatore, Y.J. Ma, B.H. Kim, Y. Jiang, J.S. Kim, L.Q. Yan, D.S. Wie, A. Banks, S.J. Oh, X. Feng, Y.G. Huang, G. Troester, and J.A. Rogers: Wireless microfluidic systems for programmed, functional transformation of transient electronic devices. Adv. Funct. Mater. 25 (32), 5100 (2015).

    Article  CAS  Google Scholar 

  113. Z. Xiang, H. Wang, A. Pant, G. Pastorin, and C. Lee: Development of vertical SU-8 microtubes integrated with dissolvable tips for transdermal drug delivery. Biomicrofluidics 7 (2), 026502 (2013).

    Article  CAS  Google Scholar 

  114. S.S. Sridharamurthy, A.K. Agarwal, D.J. Beebe, and H. Jiang: Dissolvable membranes as sensing elements for microfluidics based biological/chemical sensors. Lab Chip 6 (7), 840 (2006).

    Article  CAS  Google Scholar 

  115. J. Houghtaling, T. Liang, G. Thiessen, and E. Fu: Dissolvable bridges for manipulating fluid volumes in paper networks. Anal. Chem. 85 (23), 11201 (2013).

    Article  CAS  Google Scholar 

  116. R. Gorkin, III, C.E. Nwankire, J. Gaughran, X. Zhang, G.G. Donohoe, M. Rook, R. O’Kennedy, and J. Ducrée: Centrifugo-pneumatic valving utilizing dissolvable films. Lab Chip 12 (16), 2894 (2012).

    Article  CAS  Google Scholar 

  117. W. Seo and S.T. Phillips: Patterned plastics that change physical structure in response to applied chemical signals. J. Am. Chem. Soc. 132 (27), 9234 (2010).

    Article  CAS  Google Scholar 

  118. K. Fu, Z. Liu, Y. Yao, Z. Wang, B. Zhao, W. Luo, J. Dai, S.D. Lacey, L. Zhou, F. Shen, M. Kim, L. Swafford, L. Sengupta, and L. Hu: Transient rechargeable batteries triggered by cascade reactions. Nano Lett. 15 (7), 4664 (2015).

    Article  CAS  Google Scholar 

  119. C.W. Park, S.K. Kang, H.L. Hernandez, J.A. Kaitz, D.S. Wie, J. Shin, O.P. Lee, N.R. Sottos, J.S. Moore, J.A. Rogers, and S.R. White: Thermally triggered degradation of transient electronic devices. Adv. Mater. 27 (25), 3783 (2015).

    Article  CAS  Google Scholar 

  120. H.L. Hernandez, S.K. Kang, O.P. Lee, S.W. Hwang, J.A. Kaitz, B. Inci, C.W. Park, S. Chung, N.R. Sottos, J.S. Moore, J.A. Rogers, and S.R. White: Triggered transience of metastable poly(phthalaldehyde) for transient electronics. Adv. Mater. 26 (45), 7637 (2014).

    Article  CAS  Google Scholar 

  121. G. von Maltzahn, J.H. Park, A. Agrawal, N.K. Bandaru, S.K. Das, M.J. Sailor, and S.N. Bhatia: Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas. Cancer Res. 69 (9), 3892 (2009).

    Article  CAS  Google Scholar 

  122. T. Hoare, J. Santamaria, G.F. Goya, S. Irusta, D. Lin, S. Lau, R. Padera, R. Langer, and D.S. Kohane: A magnetically triggered composite membrane for on-demand drug delivery. Nano Lett. 9 (10), 3651 (2009).

    Article  CAS  Google Scholar 

  123. J. Kim, A. Banks, H. Cheng, Z. Xie, S. Xu, K.I. Jang, J.W. Lee, Z. Liu, P. Gutruf, X. Huang, P. Wei, F. Liu, K. Li, M. Dalal, R. Ghaffari, X. Feng, Y. Huang, S. Gupta, U. Paik, and J.A. Rogers: Epidermal electronics with advanced capabilities in near-field communication. Small 11 (8), 906 (2015).

    Article  CAS  Google Scholar 

  124. J.A. Rogers, T. Someya, and Y. Huang: Materials and mechanics for stretchable electronics. Science 327 (5973), 1603 (2010).

    Article  CAS  Google Scholar 

  125. D.H. Kim, N. Lu, R. Ma, Y.S. Kim, R.H. Kim, S. Wang, J. Wu, S.M. Won, H. Tao, A. Islam, K.J. Yu, T.I. Kim, R. Chowdhury, M. Ying, L. Xu, M. Li, H.J. Chung, H. Keum, M. McCormick, P. Liu, Y.W. Zhang, F.G. Omenetto, Y. Huang, T. Coleman, and J.A. Rogers: Epidermal electronics. Science 333 (6044), 838 (2011).

    Article  CAS  Google Scholar 

  126. Y. Zhang, H. Fu, Y. Su, S. Xu, H. Cheng, J.A. Fan, K-C. Hwang, J.A. Rogers, and Y. Huang: Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater. 61 (20), 7816 (2013).

    Article  CAS  Google Scholar 

  127. J.A. Fan, W.H. Yeo, Y. Su, Y. Hattori, W. Lee, S.Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R.J. Larsen, Y. Huang, and J.A. Rogers: Fractal design concepts for stretchable electronics. Nat. Commun. 5, 3266 (2014).

    Article  CAS  Google Scholar 

  128. R.H. Kim, M.H. Bae, D.G. Kim, H. Cheng, B.H. Kim, D.H. Kim, M. Li, J. Wu, F. Du, H.S. Kim, S. Kim, D. Estrada, S.W. Hong, Y. Huang, E. Pop, and J. Rogers: Stretchable, transparent graphene interconnects for arrays of microscale inorganic light emitting diodes on rubber substrates. Nano Lett. 11, 3381 (2011).

    Google Scholar 

  129. J. Yang, A.R. Webb, and G.A. Ameer: Novel citric acid-based biodegradable elastomers for tissue engineering. Adv. Mater. 16 (6), 511 (2004).

    Article  CAS  Google Scholar 

  130. J. Lee, J. Wu, M. Shi, J. Yoon, S.I. Park, M. Li, Z. Liu, Y. Huang, and J.A. Rogers: Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23 (8), 986 (2011).

    Article  CAS  Google Scholar 

  131. Z. Liu, H. Cheng, and J. Wu: Mechanics of solar module on structured substrates. J. Appl. Mech. 81 (6), 064502 (2014).

    Article  Google Scholar 

  132. J.J. Norton, D.S. Lee, J.W. Lee, W. Lee, O. Kwon, P. Won, S-Y. Jung, H. Cheng, J-W. Jeong, and A. Akce: Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proc. Natl. Acad. Sci. 112 (13), 3920 (2015).

    Article  CAS  Google Scholar 

  133. J.W. Jeong, M.K. Kim, H. Cheng, W.H. Yeo, X. Huang, Y. Liu, Y. Zhang, Y. Huang, and J.A. Rogers: Capacitive epidermal electronics for electrically safe, long-term electrophysiological measurements. Adv. Healthcare Mater. 3 (5), 642 (2014).

    Article  CAS  Google Scholar 

  134. J.W. Jeong, W.H. Yeo, A. Akhtar, J.J. Norton, Y.J. Kwack, S. Li, S.Y. Jung, Y. Su, W. Lee, J. Xia, H. Cheng, Y. Huang, W.S. Choi, T. Bretl, and J.A. Rogers: Materials and optimized designs for human-machine interfaces via epidermal electronics. Adv. Mater. 25 (47), 6839 (2013).

    Article  CAS  Google Scholar 

  135. K.I. Jang, S.Y. Han, S. Xu, K.E. Mathewson, Y. Zhang, J.W. Jeong, G.T. Kim, R.C. Webb, J.W. Lee, T.J. Dawidczyk, R.H. Kim, Y.M. Song, W.H. Yeo, S. Kim, H. Cheng, S.I. Rhee, J. Chung, B. Kim, H.U. Chung, D. Lee, Y. Yang, M. Cho, J.G. Gaspar, R. Carbonari, M. Fabiani, G. Gratton, Y. Huang, and J.A. Rogers: Rugged and breathable forms of stretchable electronics with adherent composite substrates for transcutaneous monitoring. Nat. Commun. 5, 4779 (2014).

    Article  CAS  Google Scholar 

  136. X. Huang, Y. Liu, S.W. Hwang, S.K. Kang, D. Patnaik, J.F. Cortes, and J.A. Rogers: Biodegradable materials for multilayer transient printed circuit boards. Adv. Mater. 26 (43), 7371 (2014).

    Article  CAS  Google Scholar 

  137. M.A. Daniele, A.J. Knight, S.A. Roberts, K. Radom, and J.S. Erickson: Sweet substrate: A polysaccharide nanocomposite for conformal electronic decals. Adv. Mater. 27 (9), 1600 (2015).

    Article  CAS  Google Scholar 

  138. J. Reeder, M. Kaltenbrunner, T. Ware, D. Arreaga-Salas, A. Avendano-Bolivar, T. Yokota, Y. Inoue, M. Sekino, W. Voit, T. Sekitani, and T. Someya: Mechanically adaptive organic transistors for implantable electronics. Adv. Mater. 26 (29), 4967 (2014).

    Article  CAS  Google Scholar 

  139. Y. Li, J. Rodrigues, and H. Tomas: Injectable and biodegradable hydrogels: Gelation, biodegradation and biomedical applications. Chem. Soc. Rev. 41 (6), 2193 (2012).

    Article  CAS  Google Scholar 

  140. M.H. Park, M.K. Joo, B.G. Choi, and B. Jeong: Biodegradable thermogels. Acc. Chem. Res. 45 (3), 424 (2012).

    Article  CAS  Google Scholar 

  141. H. Zhu, Z. Jia, Y. Chen, N. Weadock, J. Wan, O. Vaaland, X. Han, T. Li, and L. Hu: Tin anode for sodium-ion batteries using natural wood fiber as a mechanical buffer and electrolyte reservoir. Nano Lett. 13 (7), 3093 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work is supported by ASME Haythornthwaite Foundation Research Initiation Grant, Dorothy Quiggle Career Development Professorship in Engineering, and the start-up fund provided by the Engineering Science and Mechanics Department, College of Engineering, and Materials Research Institute at The Pennsylvania State University. The author also thanks Vikas Vepachedu for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanyu Cheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, H. Inorganic dissolvable electronics: materials and devices for biomedicine and environment. Journal of Materials Research 31, 2549–2570 (2016). https://doi.org/10.1557/jmr.2016.289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.289

Navigation