Skip to main content
Log in

Size-controllable synthesis of Fe3O4 nanoparticles through oxidation–precipitation method as heterogeneous Fenton catalyst

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The particle size of Fe3O4 nanoparticles is controlled using a simple oxidation–precipitation method without any surfactant. The structure, morphology and physical properties of the synthesized Fe3O4 NPs were characterized using x-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, Brunauer–Emmett–Teller, and vibrating sample magnetometer. As-prepared magnetite samples exhibited spherical morphology with average diameters of 30, 70, 250, and 600 nm, respectively. Activity of the synthesized Fe3O4 NPs was evaluated for the Fenton-like reaction, using rhodamine B (RhB) as a model molecule. The results showed that catalytic activity increases with the reduced particle size. The significant higher catalytic activity of the fine Fe3O4 NPs mainly originated from the higher specific surface area, due to the increase in exposed active site number and adsorption capacity. The reusability of 30 nm Fe3O4 NPs was also investigated after three successive runs, in which the RhB degradation performances showed a slight difference with the first oxidation cycle. This investigation is of great significance for the promising application of the heterogeneous Fenton catalyst with enhanced activity in the oxidative degradation of organic pollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. K.H. Kim and S.K. Ihm: Heterogeneous catalytic wet air oxidation of refractory organic pollutants in industrial wastewaters: A review. J. Hazard. Mater. 186 (1), 16 (2011).

    Article  CAS  Google Scholar 

  2. P.V. Nidheesh: Heterogeneous Fenton catalysts for the abatement of organic pollutants from aqueous solution: A review. RSC Adv. 5 (51), 40552 (2015).

    Article  CAS  Google Scholar 

  3. R. Matta, K. Hanna, and S. Chiron: Fenton-like oxidation of 2,4,6-trinitrotoluene using different iron minerals. Sci. Total Environ. 385 (1–3), 242 (2007).

    Article  CAS  Google Scholar 

  4. L. Xu and J. Wang: A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J. Hazard. Mater. 186 (1), 256 (2011).

    Article  CAS  Google Scholar 

  5. L. Chen, C. Deng, F. Wu, and N. Deng: Decolorization of the azo dye Orange II in a montmorillonite/H2O2 system. Desalination 281, 306 (2011).

    Article  CAS  Google Scholar 

  6. L. Gu, N. Zhu, H. Guo, S. Huang, Z. Lou, and H. Yuan: Adsorption and Fenton-like degradation of naphthalene dye intermediate on sewage sludge derived porous carbon. J. Hazard. Mater. 246–247, 145 (2013).

    Article  Google Scholar 

  7. S. Song, H. Yang, R. Rao, H. Liu, and A. Zhang: High catalytic activity and selectivity for hydroxylation of benzene to phenol over multi-walled carbon nanotubes supported Fe3O4 catalyst. Appl. Catal., A 375 (2), 265 (2010).

    Article  CAS  Google Scholar 

  8. G.M. Ucoski, F.S. Nunes, G. DeFreitas-Silva, Y.M. Idemori, and S. Nakagaki: Metalloporphyrins immobilized on silica-coated Fe3O4 nanoparticles: Magnetically recoverable catalysts for the oxidation of organic substrates. Appl. Catal., A 459, 121 (2013).

    Article  CAS  Google Scholar 

  9. L. Gao, J. Zhuang, L. Nie, J. Zhang, Y. Zhang, N. Gu, T. Wang, J. Feng, D. Yang, S. Perrett, and X. Yan: Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2 (9), 577 (2007).

    Article  CAS  Google Scholar 

  10. J. Zhang, J. Zhuang, L. Gao, Y. Zhang, N. Gu, J. Feng, D. Yang, J. Zhu, and X. Yan: Decomposing phenol by the hidden talent of ferromagnetic nanoparticles. Chemosphere 73 (9), 1524 (2008).

    Article  CAS  Google Scholar 

  11. X. Xue, K. Hanna, M. Abdelmoula, and N. Deng: Adsorption and oxidation of PCP on the surface of magnetite: Kinetic experiments and spectroscopic investigations. Appl. Catal., B 89 (3–4), 432 (2009).

    Article  CAS  Google Scholar 

  12. S.P. Sun and A.T. Lemley: p-Nitrophenol degradation by a heterogeneous Fenton-like reaction on nano-magnetite: Process optimization, kinetics, and degradation pathways. J. Mol. Catal. A: Chem. 349 (1–2), 71 (2011).

    Article  CAS  Google Scholar 

  13. L. Xu and J. Wang: Fenton-like degradation of 2,4-dichlorophenol using Fe3O4 magnetic nanoparticles. Appl. Catal., B 123–124, 117 (2012).

    Google Scholar 

  14. N. Wang, L. Zhu, D. Wang, M. Wang, Z. Lin, and H. Tang: Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrason. Sonochem. 17 (3), 526 (2010).

    Article  CAS  Google Scholar 

  15. X. Liang, Z. He, Y. Zhong, W. Tan, H. He, P. Yuan, J. Zhu, and J. Zhang: The effect of transition metal substitution on the catalytic activity of magnetite in heterogeneous Fenton reaction: In interfacial view. Colloids Surf., A 435, 28 (2013).

    Article  CAS  Google Scholar 

  16. F.F. Peng, Y. Zhang, and N. Gu: Size-dependent peroxidase-like catalytic activity of Fe3O4 nanoparticles. Chin. Chem. Lett. 19 (6), 730 (2008).

    Article  CAS  Google Scholar 

  17. Y.F. Shen, J. Tang, Z.H. Nie, Y.D. Wang, Y. Ren, and L. Zuo: Tailoring size and structural distortion of Fe3O4 nanoparticles for the purification of contaminated water. Bioresour. Technol. 100 (18), 4139 (2009).

    Article  CAS  Google Scholar 

  18. L. Hou, Q. Zhang, F. Jérôme, D. Duprez, H. Zhang, and S. Royer: Shape-controlled nanostructured magnetite-type materials as highly efficient Fenton catalysts. Appl. Catal., B 144, 739 (2014).

    Article  CAS  Google Scholar 

  19. G. Zhang, F. Qie, J. Hou, S. Luo, L. Luo, X. Sun, and T. Tan: One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation. J. Mater. Res. 27 (7), 1006 (2012).

    Article  CAS  Google Scholar 

  20. S. Asuha, B. Suyala, X. Siqintana, and S. Zhao: Direct synthesis of Fe3O4 nanopowder by thermal decomposition of Fe-urea complex and its properties. J. Alloys Compd. 509 (6), 2870 (2011).

    Article  CAS  Google Scholar 

  21. A. Prakash, A.V. McCormick, and M.R. Zachariah: Aero-sol−gel synthesis of nanoporous iron-oxide particles: a potential oxidizer for nanoenergetic materials. Chem. Mater. 16 (8), 1466 (2004).

    Article  CAS  Google Scholar 

  22. K. Petcharoen and A. Sirivat: Synthesis and characterization of magnetite nanoparticles via the chemical co-precipitation method. Mater. Sci. Eng., B 177 (5), 421 (2012).

    Article  CAS  Google Scholar 

  23. L. Li, J. Ding, and J. Xue: A facile green approach for synthesizing monodisperse magnetite nanoparticles. J. Mater. Res. 25 (5), 810 (2010).

    Article  CAS  Google Scholar 

  24. A. Yan, X. Liu, G. Qiu, H. Wu, R. Yi, N. Zhang, and J. Xua: Solvothermal synthesis and characterization of size-controlled Fe3O4 nanoparticles. J. Alloys Compd. 458 (1–2), 487 (2008).

    Article  CAS  Google Scholar 

  25. H. Meng, Z. Zhang, F. Zhao, T. Qiu, and J. Yang: Orthogonal optimization design for preparation of Fe3O4 nanoparticles via chemical coprecipitation. Appl. Surf. Sci. 280, 679 (2013).

    Article  CAS  Google Scholar 

  26. Y. Zhang, W. Shi, D. Feng, H. Ma, Y. Liang, and J. Zuo: Application of rhodamine B thiolactone to fluorescence imaging of Hg2+ in Arabidopsis thaliana. Sens. Actuators, B 153 (1), 261 (2011).

    Article  CAS  Google Scholar 

  27. B. Chai, F. Zou, and W. Chen: Facile synthesis of Ag3PO4/C3N4 composites with improved visible light photocatalytic activity. J. Mater. Res. 30 (8), 1128 (2015).

    Article  CAS  Google Scholar 

  28. X. Xue, K. Hanna, and N. Deng: Fenton-like oxidation of Rhodamine B in the presence of two types of iron (II, III) oxide. J. Hazard. Mater. 166 (1), 407 (2009).

    Article  CAS  Google Scholar 

  29. P.P. Gan and S.F.Y. Li: Efficient removal of rhodamine B using a rice hull-based silica supported iron catalyst by Fenton-like process. Chem. Eng. J. 229, 351 (2013).

    Article  CAS  Google Scholar 

  30. X. Wang, Y. Pan, Z. Zhu, and J. Wu: Efficient degradation of rhodamine B using Fe-based metallic glass catalyst by Fenton-like process. Chemosphere 117, 638 (2014).

    Article  CAS  Google Scholar 

  31. S. Liu, F. Lu, R. Xing, and J.J. Zhu: Structural effects of Fe3O4 nanocrystals on peroxidase-like activity. Chem. — Eur. J. 17 (2), 620 (2011).

    Article  CAS  Google Scholar 

  32. W. Yu, T. Zhang, J. Zhang, X. Qiao, L. Yang, and Y. Liu: The synthesis of octahedral nanoparticles of magnetite. Mater. Lett. 60 (24), 2998 (2006).

    Article  CAS  Google Scholar 

  33. S. Yang, H. He, D. Wu, D. Chen, X. Liang, Z. Qin, M. Fan, J. Zhu, and P. Yuan: Decolorization of methylene blue by heterogeneous Fenton reaction using Fe3−xTixO4 (0 < x < 0.78) at neutral pH values. Appl. Catal., B 89 (3–4), 527 (2009).

    Article  CAS  Google Scholar 

  34. K. Tao, H. Dou, and K. Sun: Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence. Colloids Surf., A 320 (1–3), 115 (2008).

    Article  CAS  Google Scholar 

  35. G.F. Goya, T.S. Berquó, F.C. Fonseca, and M.P. Morales: Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94 (5), 3520 (2003).

    Article  CAS  Google Scholar 

  36. D. Wan, W. Li, G. Wang, K. Chen, L. Lu, and Q. Hu: Adsorption and heterogeneous degradation of rhodamine B on the surface of magnetic bentonite material. Appl. Surf. Sci. 349, 988 (2015).

    Article  CAS  Google Scholar 

  37. T. Yamashita and P. Hayes: Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254 (8), 2441 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This project was supported in part by the Natural Science Foundation of Hubei Province (2014CFB810), Specialized Research Fund for the Doctoral Program of Higher Education of China (20114219110002) and Science and Technology Project (Major) of Jiangxi Province (20152ACG70003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Li.

Supplementary data for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, D., Li, W., Wang, G. et al. Size-controllable synthesis of Fe3O4 nanoparticles through oxidation–precipitation method as heterogeneous Fenton catalyst. Journal of Materials Research 31, 2608–2616 (2016). https://doi.org/10.1557/jmr.2016.285

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.285

Navigation