Skip to main content

Advertisement

Log in

Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel set of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. The insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).

    CAS  Google Scholar 

  2. Y. Zhang, G.M. Stocks, K. Jin, C. Lu, H. Bei, B.C. Sales, L. Wang, L.K. Beland, R.E. Stoller, G.D. Samolyuk, M. Caro, A. Caro, and W.J. Weber: Influence of chemical disorder on energy dissipation and defect evolution in nickel and Ni-based concentrated solid-solution alloys. Nat. Commun. 6, 8736 (2015).

    CAS  Google Scholar 

  3. L.J. Santodonato, Y. Zhang, M. Feygenson, C.M. Parish, M.C. Gao, R.J.K. Weber, J.C. Neuefeind, Z. Tang, and P.K. Liaw: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).

    Google Scholar 

  4. O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    CAS  Google Scholar 

  5. K. Jin, B.C. Sales, G.M. Stocks, G.D. Samolyuk, M. Daene, W.J. Weber, Y. Zhang, and H. Bei: Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity. Sci. Rep. 6, 20159 (2016).

    CAS  Google Scholar 

  6. C. Lu, K. Jin, L.K. Béland, F. Zhang, T. Yang, L. Qiao, Y. Zhang, H. Bei, H.M. Christen, R.E. Stoller, and L. Wang: Direct observation of defect range and evolution in ion-irradiated single crystalline Ni and Ni binary alloys. Sci. Rep. 6, 19994 (2016).

    CAS  Google Scholar 

  7. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).

    Google Scholar 

  8. O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758–1765 (2010).

    CAS  Google Scholar 

  9. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698–706 (2011).

    CAS  Google Scholar 

  10. Z. Wu, H. Bei, G.M. Pharr, and E.P. George: Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Mater. 81, 428–441 (2014).

    CAS  Google Scholar 

  11. X. Ye, M. Ma, W. Liu, L. Li, M. Zhong, Y. Liu, and Q. Wu: Synthesis and characterization of high-entropy alloy AlxFeCoNiCuCr by laser cladding. Adv. Mater. Sci. Eng. 2011, 1–7 (2011).

    Google Scholar 

  12. F. Otto, Y. Yang, H. Bei, and E.P. George: Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys. Acta Mater. 61, 2628–2638 (2013).

    CAS  Google Scholar 

  13. Y.P. Wang, B.S. Li, and H.Z. Fu: Solid solution or intermetallics in a high-entropy alloy. Adv. Eng. Mater. 11, 641–644 (2009).

    CAS  Google Scholar 

  14. M-H. Tsai and J-W. Yeh: High-entropy alloys: A critical review. Mater. Res. Lett. 2, 107–123 (2014).

    Google Scholar 

  15. M.H. Tsai: Physical properties of high entropy alloys. Entropy 15, 5338–5345 (2013).

    CAS  Google Scholar 

  16. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299–303 (2004).

    CAS  Google Scholar 

  17. Z. Wu, H. Bei, F. Otto, G.M. Pharr, and E.P. George: Recovery, recrystallization, grain growth and phase stability of a family of FCC structured multi-component equiatomic solid solution alloys. Intermetallics 46, 131–140 (2014).

    CAS  Google Scholar 

  18. J. Kudrnovský, V. Drchal, and P. Bruno: Magnetic properties of fcc Ni-based transition metal alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 77, 224422 (2008).

    Google Scholar 

  19. M.C. Troparevsky, J.R. Morris, M. Daene, Y. Wang, A.R. Lupini, and G.M. Stocks: Beyond atomic sizes and Hume–Rothery rules: Understanding and predicting high-entropy alloys. JOM 67, 2350–2363 (2015).

    CAS  Google Scholar 

  20. A. Tamm, A. Aabloo, M. Klintenberg, G.M. Stocks, and A. Caro: Atomic-scale properties of Ni-based FCC ternary, and quaternary alloys. Acta Mater. 99, 307–312, (2015).

    CAS  Google Scholar 

  21. J. Faulkner and G.M. Stocks: Calculating properties with the coherent-potential approximation. Phys. Rev. B: Condens. Matter Mater. Phys. 21, 3222 (1980).

    CAS  Google Scholar 

  22. M.C. Troparevsky, J.R. Morris, P.R.C. Kent, A.R. Lupini, and G.M. Stocks: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).

    Google Scholar 

  23. W.H. Butler and G.M. Stocks: Mass and lifetime enhancement due to disorder on AgcPd1−c alloys. Phys. Rev. Lett. 48, 55–58 (1982).

    Google Scholar 

  24. W.H. Butler and G.M. Stocks: Calculated electrical-conductivity and thermopower of silver–palladium alloys. Phys. Rev. B: Condens. Matter Mater. Phys. 29, 4217–4233 (1984).

    CAS  Google Scholar 

  25. W.G. Hoover: Computational Statistical Mechanics (Elsevier, Amsterdam, Oxford, New York, Tokyo, 1991).

    Google Scholar 

  26. M. Caro, L.K. Béland, G.D. Samolyuk, R.E. Stoller, and A. Caro: Lattice thermal conductivity of multi-component alloys. J. Alloys Compd. 648, 408–413 (2015).

    CAS  Google Scholar 

  27. W.G. Hoover: Computational Statistical Mechanics (Elsevier, Amsterdam, 1981).

    Google Scholar 

  28. G. Bonny, C. Nicolas, and T. Dmitry: Interatomic potential for studying aging under irradiation in stainless steels: The FeNiCr model alloy. Model. Simul. Mater. Sci. Eng. 21, 085004 (2013).

    Google Scholar 

  29. T.R. Allen, J.I. Cole, J. Gan, G.S. Was, R. Dropek, and E.A. Kenik: Swelling and radiation-induced segregation in austentic alloys. J. Nucl. Mater. 342, 90–100 (2005).

    CAS  Google Scholar 

  30. A. Caro, A. Correa, A. Tamm, G.D. Samolyuk, and G.M. Stocks: Adequacy of damped dynamics to represent the electron–phonon interaction in solids. Phys. Rev. B: Condens. Matter Mater. Phys. 92, 144309 (2015).

    Google Scholar 

  31. G.D. Samolyuk, L.K. Béland, G.M. Stocks, and R.E. Stoller: Electron–phonon coupling in Ni-based binary alloys with application to displacement cascade modeling. J. Phys.: Condens. Matter 28, 75501–75511 (2016).

    Google Scholar 

  32. A.A. Correa, J. Kohanoff, E. Artacho, D. Sanchez-Portal, and A. Caro: Erratum: Nonadiabatic forces in ion-solid interactions: The initial stages of radiation damage. Phys. Rev. Lett. 109, 213201 (2012).

    Google Scholar 

  33. A. Schleife, E.W. Draeger, Y. Kanai, and A.A. Correa: Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn–Sham equations in large-scale simulations. J. Chem. Phys. 137, 22A546 (2012).

    Google Scholar 

  34. S. Zhao, G.M. Stocks, and Y. Zhang: The formation and migration properties of point defects in Ni0.5Fe0.5, Ni0.8Fe0.2 and Ni0.8Cr0.2 concentrated solid-solution alloys from atomistic simulations. arXiv preprint: 1607.04667 (2016).

  35. K. Jin, H. Bei, and Y. Zhang: Ion irradiation induced defect evolution in Ni and Ni-containing fcc equiatomic binary alloys. J. Nucl. Mater. 471, 193–199 (2016).

    CAS  Google Scholar 

  36. R.J. Olsen, K. Jin, C. Lu, L.K. Beland, L. Wang, H. Bei, E.D. Specht, and B.C. Larson: Investigation of defect clusters in ion-irradiated Ni and NiCo using diffuse x-ray scattering and electron microscopy. J. Nucl. Mater. 469, 153–161 (2016).

    CAS  Google Scholar 

  37. B. Liu, F. Yuan, K. Jin, Y. Zhang, and W.J. Weber: Ab initio molecular dynamics investigations of low-energy recoil events in Ni and NiCo. J. Phys.: Condens. Matter 27(43), 435006 (2015).

    Google Scholar 

  38. L.K. Béland, G.D. Samolyuk, and R.E. Stoller: Differences in the accumulation of ion-beam damage in Ni and NiFe explained by atomistic simulations. J. Alloys Compd. 662, 415–420 (2016).

    Google Scholar 

  39. D.S. Aidhy, C. Lu, K. Jin, H. Bei, Y. Zhang, L. Wang, and W.J. Weber: Point defect evolution in Ni, NiFe, and NiCr alloys from atomistic simulations and irradiation experiments. Acta Mater. 99, 69–76 (2015).

    CAS  Google Scholar 

  40. L.K. Beland, C. Lu, Y.N. Osetsky, G.D. Samolyuk, A. Caro, L. Wang, and R.E. Stoller: Features of primary damage by high energy displacement cascades in concentrated Ni-based alloys. J. Appl. Phys. 119, 085901 (2016).

    Google Scholar 

  41. D.S. Aidhy, C. Lu, K. Jin, H. Bei, Y. Zhang, L. Wang, and W.J. Weber: Formation and growth of stacking fault tetrahedra in Ni via vacancy aggregation mechanism. Scr. Mater. 114, 137–141 (2016).

    CAS  Google Scholar 

  42. M.W. Ullah, D.S. Aidhy, Y. Zhang, and W.J. Weber: Damage accumulation in ion-irradiated Ni-based concentrated solid solution alloys. Acta Mater. 109, 17–22 (2016).

    CAS  Google Scholar 

  43. G.P. Purja Pun, V. Yamakov, and Y. Mishin: Interatomic potential for the ternary Ni–Al–Co system and application to atomistic modeling of the B2–L10 martensitic transformation. Model. Simul. Mater. Sci. Eng. 23, 065006 (2015).

    Google Scholar 

  44. G. Bonny, R.C. Pasianot, and L. Malerba: Fe–Ni many-body potential for metallurgical applications. Model. Simul. Mater. Sci. Eng. 17, 025010 (2009).

    Google Scholar 

  45. J. Silcox and P.B. Hirsch: Direct observations of defects in quenched gold. Philos. Mag. 4, 72–89 (1959).

    CAS  Google Scholar 

  46. Y.N. Osetsky and D.J. Bacon: Defect cluster formation in displacement cascades in copper. Nucl. Instrum. Methods Phys. Res., Sect. B 180, 85–90 (2001).

    CAS  Google Scholar 

  47. M. de Jong and J.S. Koehler: Annealing of pure gold quenched from above 800 °C. Phys. Rev. 129, 49–61 (1963).

    CAS  Google Scholar 

  48. R.A. Johnson: Calculations of small vacancy and interstitial clusters for an fcc lattice. Physical Review 152(2), 629 (1966).

    CAS  Google Scholar 

  49. W. Schüle, R. Scholz, and A. Panzarasa: Properties of vacancies and divacancies in FCC metals (Commission of the European Communities, ECSC-EEC-EAEC, Brussels-Luxembourg, Belgium, 1979); p. 21, ISBN 92-825-0781-5 Catalogue number: CD-NA-79-001-EN-C.

    Google Scholar 

  50. R. Scholz and W. Schule: Properties of single vacancies and of divacancies in copper. Phys. Lett. A 64, 340–341 (1977).

    Google Scholar 

  51. N.Q. Lam, N.V. Doan, and L. Dagens: Multiple defects in copper and silver. J. Phys. F: Met. Phys. 15, 799–808 (1985).

    CAS  Google Scholar 

  52. Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, and S.I. Golubov: Stability and mobility of defect clusters and dislocation loops in metals. J. Nucl. Mater. 276, 65–77 (2000).

    CAS  Google Scholar 

  53. E. Martínez and B.P. Uberuaga: Mobility and coalescence of stacking fault tetrahedra in Cu. Sci. Rep. 5, 9084 (2015) DOI: https://doi.org/10.1038/srep09084.

    Google Scholar 

  54. L.K. Béland, P. Brommer, F. El-Mellouhi, J-F. Joly, and N. Mousseau: Kinetic activation relaxation technique. Phys. Rev. B: Condens. Matter Mater. Phys. 84, 4 (2011).

    Google Scholar 

  55. N. Mousseau, L.K. Béland, P.B. Rommer, F. El-Mellouhi, J-F. Joly, G.K. N’Tsouaglo, O. Restrepo, and M. Trochet: Following atomistic kinetics on experimental timescales with the kinetic activation–relaxation technique. Comput. Mater. Sci. 100, 111–123 (2015).

    CAS  Google Scholar 

  56. P. Brommer, L.K. Beland, J-F. Joly, and N. Mousseau: Understanding long-time vacancy aggregation in iron: A kinetic activation-relaxation technique study. Phys. Rev. B: Condens. Matter Mater. Phys. 90, 134109 (2014).

    Google Scholar 

  57. L.K. Béland, Y.N. Osetsky, R.E. Stoller, and H. Xu: Slow relaxation of cascade-induced defects in Fe. Phys. Rev. B 91, 054108 (2015).

    Google Scholar 

  58. L.K. Béland, Y.N. Osetsky, R.E. Stoller, and H. Xu: Kinetic activation–relaxation technique and self-evolving atomistic kinetic Monte Carlo: Comparison of on-the-fly kinetic Monte Carlo algorithms. Comput. Mater. Sci. 100, 124–134 (2015).

    Google Scholar 

  59. L.K. Béland, Y.N. Osetsky, R.E. Stoller, and H. Xu: Interstitial loop transformations in FeCr. J. Alloys Compd. 640, 219–225 (2015).

    Google Scholar 

  60. F. Granberg, K. Nordlundl, M.W. Ullah, K. Jin, C. Lu, H. Bei, L. Wang, F. Djurabekova, W.J. Weber, and Y. Zhang: Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. 116, 135504 (2016).

    CAS  Google Scholar 

  61. Y. Zhang, M.L. Crespillo, H. Xue, K. Jin, C.H. Chen, C.L. Fontana, J.T. Graham, and W.J. Weber: New ion beam materials laboratory for materials modification and irradiation effects research. Nucl. Instrum. Methods Phys. Res., Sect. B 338, 19–30 (2014).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported as part of the Energy Dissipation to Defect Evolution (EDDE), an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences. Ion beam work was performed at the University of Tennessee–Oak Ridge National Laboratory Ion Beam Materials Laboratory (IBML) located at the campus of the University of Tennessee, Knoxville. This simulation used resources of the National Energy Research Scientific Computing Center, supported by the Office of Science, US Department of Energy, under Contract No. DEAC02–05CH11231. LKB acknowledgs additional support from a fellowship awarded by the Fonds Québéecois de recherche Nature et Technologies. This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a nonexclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwen Zhang.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Jin, K., Xue, H. et al. Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys. Journal of Materials Research 31, 2363–2375 (2016). https://doi.org/10.1557/jmr.2016.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.269

Navigation