Skip to main content
Log in

Formation mechanism and stability of the phase in the interface of tungsten carbide particles reinforced iron matrix composites: First principles calculations and experiments

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To study the formation mechanism and stability of the phase in the interface of tungsten carbide particles reinforced iron matrix composites, the composites were fabricated by spark plasma sintering (SPS) technique and combined with first-principles calculation. It was found that Fe3W3C compound was stable from the perspective of both thermodynamics and mechanical properties based on our calculations. Interfacial reaction product of tungsten carbide particles reinforced iron matrix composites was M6C. Experimental results indicated that the samples prepared by SPS did not appear interfacial reaction zone, while, interfacial reaction zone appeared for the remelted samples. With the increasing remelting temperature, the width of the interface reaction zone increased because the mutual diffusion occurred at the interface between tungsten carbide particles and matrix. Its formation mechanism was 3Fe + 3/2W2C → Fe3W3C + 1/2C. Our research might provide a theoretical guidance in controlling the interface of tungsten carbide particles reinforced iron matrix composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. R. Gassmann: Laser cladding with (WC + W2C)/Co–Cr–C and (WC + W2C)/Ni–B–Si composites for enhanced abrasive wear resistance. Mater. Sci. Technol. 12(8), 691 (1996).

    Article  CAS  Google Scholar 

  2. D. Lou, J. Hellman, D. Luhulima, J. Liimatainen, and V. Lindroos: Interactions between tungsten carbide (WC) particulates and metal matrix in WC-reinforced composites. Mater. Sci. Eng., A 340(1), 155 (2003).

    Article  Google Scholar 

  3. T. Fan, Z. Shi, D. Zhang, and R. Wu: The interfacial reaction characteristics in SiC/Al composite above liquidus during remelting. Mater. Sci. Eng., A 257(2), 281 (1998).

    Article  Google Scholar 

  4. O. Liuzhang, L. Chengping, L. Zhuoxuan, and S. Xiandong: Study on interface characteristics of SiCp/ZL109 aluminium alloy composites. Foundry 58(3), 9 (1999).

    Google Scholar 

  5. Z. Liu and X-M. Liu: Effects of interface on wear resistance of fiber reinforced aluminum–silicon alloy composites. Min. Metall. Eng. 23(3), 65 (2003).

    Google Scholar 

  6. Z. Liu and B. Zhou: A study of the interface of short alumina fiber reinforced aluminium alloy composites. Acta Mater. Compositae Sin. 8(4), 1 (1991).

    Google Scholar 

  7. R. Arsenault and N. Shi: Dislocation generation due to differences between the coefficients of thermal expansion. Mater. Sci. Eng. 81, 175 (1986).

    Article  CAS  Google Scholar 

  8. R. Arsenault, L. Wang, and C. Feng: Strengthening of composites due to microstructural changes in the matrix. Acta Metall. Mater. 39(1), 47 (1991).

    Article  CAS  Google Scholar 

  9. G-S. Zhang, J-D. Xing, and Y-M. Gao: Impact wear resistance of WC/Hadfield steel composite and its interfacial characteristics. Wear 260(7), 728 (2006).

    Article  CAS  Google Scholar 

  10. X. You, C. Zhang, N. Liu, M. Huang, and J. Ma: Laser surface melting of electro-metallurgic WC/steel composites. J. Mater. Sci. 43(8), 2929 (2008).

    Article  CAS  Google Scholar 

  11. J-P. Gao, Y. Li, S-Z. Wei, W-H. Zhang, and R. Long: Effect of sintering temperature on microstructure and properties of WC steel-bonded cemented carbide/carbon steel composite layer. Mater. Mech. Eng. 1, 005 (2008).

    Google Scholar 

  12. S.Z. Wei, Y. Li, J.P. Gao, Y.P. Ji, and R. Long: Phase structure and microstructure of the interface between WC steel bond hard alloy and carbon steel. In Key Engineering Materials, Vol. 368 (Trans Tech Publications, Switzerland 2008); 1606.

    Google Scholar 

  13. J.P. Perdew, K. Burke, and M. Ernzerhof: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996).

    Article  CAS  Google Scholar 

  14. B.G. Pfrommer, M. Côté, S.G. Louie, and M.L. Cohen: Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 131(1), 233 (1997).

    Article  CAS  Google Scholar 

  15. S.F. Matar, R. Weihrich, D. Kurowski, and A. Pfitzner: DFT calculations on the electronic structure of CuTe2 and Cu7Te4. Solid State Sci. 6(1), 15 (2004).

    Article  CAS  Google Scholar 

  16. J. Feng, B. Xiao, J. Chen, Y. Du, J. Yu, and R. Zhou: Stability, thermal and mechanical properties of PtxAly compounds. Mater. Des. 32(6), 3231 (2011).

    Article  CAS  Google Scholar 

  17. E. Zhao, J. Wang, J. Meng, and Z. Wu: Phase stability and mechanical properties of rhenium borides by first-principles calculations. J. Comput. Chem. 31(9), 1904 (2010).

    CAS  Google Scholar 

  18. Y. Li, Y. Gao, B. Xiao, T. Min, Z. Fan, S. Ma, and L. Xu: Theoretical study on the stability, elasticity, hardness and electronic structures of W–C binary compounds. J. Alloys Compd. 502(1), 28 (2010).

    Article  CAS  Google Scholar 

  19. S. Patil, S. Khare, B. Tuttle, J. Bording, and S. Kodambaka: Mechanical stability of possible structures of PtN investigated using first-principles calculations. Phys. Rev. B: Condens. Matter Mater. Phys. 73(10), 104118 (2006).

    Article  Google Scholar 

  20. Z-j. Wu, E-j. Zhao, H-p. Xiang, X-f. Hao, X-j. Liu, and J. Meng: Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles. Phys. Rev. B: Condens. Matter Mater. Phys. 76(5), 054115 (2007).

    Article  Google Scholar 

  21. D. Suetin, I. Shein, and A. Ivanovskii: Structural, electronic and magnetic properties of η carbides (Fe3W3C, Fe6W6C, Co3W3C and Co6W6C) from first principles calculations. Phys. B 404(20), 3544 (2009).

    Article  CAS  Google Scholar 

  22. Y. Liu, Y. Jiang, R. Zhou, and J. Feng: Mechanical properties and chemical bonding characteristics of WC and W2C compounds. Ceram. Int. 40(2), 2891 (2014).

    Article  CAS  Google Scholar 

  23. Y. Liang and Y. Che: Handbook of Thermodynamic Data for Inorganic Material (Northeast University Press, China, 1993).

    Google Scholar 

  24. Q-B. Yang and S. Andersson: Application of coincidence site lattices for crystal structure description. Part I: Σ = 3. Acta Crystallogr., Sect. B: Struct. Sci. 43(1), 1 (1987).

    Article  Google Scholar 

  25. Y. Liu, Y. Jiang, R. Zhou, and J. Feng: First-principles calculations of the mechanical and electronic properties of Fe–W–C ternary compounds. Comput. Mater. Sci. 82, 26 (2014).

    Article  CAS  Google Scholar 

  26. Y. Li, Y. Gao, Z. Fan, B. Xiao, Q. Yue, T. Min, and S. Ma: First-principles study on the stability and mechanical property of eta M3W3C (M = Fe, Co, Ni) compounds. Phys. B 405(3), 1011 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation of China (Nos: 51361019 and 51561018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zulai Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wei, H., Shan, Q. et al. Formation mechanism and stability of the phase in the interface of tungsten carbide particles reinforced iron matrix composites: First principles calculations and experiments. Journal of Materials Research 31, 2376–2383 (2016). https://doi.org/10.1557/jmr.2016.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.268

Navigation