Skip to main content
Log in

Electrochemical corrosion behaviors of a stress-aged Al-Zn-Mg-Cu alloy

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effects of stress-aging processing on corrosion resistance of an Al-Zn-Mg-Cu alloy were investigated. It is found that the one-stage stress-aged alloy is strongly sensitive to the electrochemical corrosion. The poor corrosion resistance of the one-stage stress-aged alloy can be attributed to fine intragranular aging precipitates and continuous distribution of grain boundary precipitates. Meanwhile, the incomplete precipitation of solute atoms results in high electrochemical activity of aluminum matrix. However, when the alloy is two-stage stress-aged, the corrosion resistance is greatly improved. Furthermore, the corrosion resistance decreases firstly and then increases with increasing the first stage stress-aging temperature. Increasing external stress can enhance the corrosion resistance of the two-stage stress-aged alloy. These phenomena are mainly related to aging precipitates within grains and along grain boundaries. The coarse and relatively low-density intragranular aging precipitates, as well as the discontinuously distributed grain boundary precipitates can enhance the corrosion resistance of the stress-aged alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. M. Zhou, Y.C. Lin, J. Deng, and Y.Q. Jiang: Hot tensile deformation behaviors and constitutive model of an Al-Zn-Mg-Cu alloy. Mater. Des. 59, 141 (2014).

    CAS  Google Scholar 

  2. T. Dursun and C. Soutis: Recent developments in advanced aircraft aluminium alloys. Mater. Des. 56, 862 (2014).

    CAS  Google Scholar 

  3. Y.C. Lin, L.T. Li, Y.C. Xia, and Y.Q. Jiang: Hot deformation and processing map of a typical Al-Zn-Mg-Cu alloy. J. Alloys Compd. 550, 438 (2013).

    CAS  Google Scholar 

  4. J.T. Jiang, W.Q. Xiao, L. Yang, W.Z. Shao, S.J. Yuan, and L. Zhen: Ageing behavior and stress corrosion cracking resistance of a non-isothermally aged Al-Zn-Mg-Cu alloy. Mater. Sci. Eng., A 605, 167 (2014).

    CAS  Google Scholar 

  5. Y.S. Sun, F.L. Jiang, H. Zhang, J. Su, and W.H. Yuan: Residual stress relief in Al-Zn-Mg-Cu alloy by a new multistage interrupted artificial aging treatment. Mater. Des. 92, 281 (2016).

    CAS  Google Scholar 

  6. A. Jenab and A.K. Taheri: Experimental investigation of the hot deformation behavior of AA7075: Development and comparison of flow localization parameter and dynamic material model processing maps. Int. J. Mech. Sci. 78, 97 (2014).

    Google Scholar 

  7. N. Anjabin, A.K. Taheri, and H.S. Kim: Simulation and experimental analyses of dynamic strain aging of a supersaturated age hardenable aluminum alloy. Mater. Sci. Eng., A 585, 165 (2013).

    CAS  Google Scholar 

  8. A. Bolouri, M. Shahmiri, and C.G. Kang: Study on the effects of the compression ratio and mushy zone heating on the thixotropic microstructure of AA 7075 aluminum alloy via SIMA process. J. Alloys Compd. 509, 402 (2011).

    CAS  Google Scholar 

  9. H.Y. Li, W. Kang, and X.C. Lu: Effect of age-forming on microstructure, mechanical and corrosion properties of a novel Al-Li alloy. J. Alloys Compd. 640, 210 (2015).

    CAS  Google Scholar 

  10. F. Nový, M. Janeček, and R. Král: Microstructure changes in a 2618 aluminium alloy during ageing and creep. J. Alloys Compd. 487, 146 (2009).

    Google Scholar 

  11. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, and L.R. Wallenberg: GP-zones in Al-Zn-Mg alloys and their role in artificial aging. Acta Mater. 49, 3443 (2001).

    CAS  Google Scholar 

  12. W.C. Yang, S.X. Ji, Q. Zhang, and M.P. Wang: Investigation of mechanical and corrosion properties of an Al-Zn-Mg-Cu alloy under various ageing conditions and interface analysis of η′ precipitate. Mater. Des. 85, 752 (2015).

    CAS  Google Scholar 

  13. Y. Liu, D.M. Jiang, and W.J. Li: The effect of multistage ageing on microstructure and mechanical properties of 7050 alloy. J. Alloys Compd. 671, 408 (2016).

    CAS  Google Scholar 

  14. T. Marlaud, A. Deschamps, F. Bley, W. Lefebvre, and B. Baroux: Evolution of precipitate microstructures during the retrogression and re-ageing heat treatment of an Al-Zn-Mg-Cu alloy. Acta Mater. 58, 4814 (2010).

    CAS  Google Scholar 

  15. R.M. Su, Y.D. Qu, J.H. You, and R.D. Li: Study on a new retrogression and re-aging treatment of spray formed Al-Zn-Mg-Cu alloy. J. Mater. Res. 31, 573 (2016).

    CAS  Google Scholar 

  16. G.S. Peng, K.H. Chen, S.Y. Chen, and H.C. Fang: Influence of repetitious-RRA treatment on the strength and SCC resistance of Al-Zn-Mg-Cu alloy. Mater. Sci. Eng., A 528, 4014 (2011).

    Google Scholar 

  17. J.T. Jiang, Q.J. Tang, L. Yang, K. Zhang, S.J. Yuan, and L. Zhen: Non-isothermal ageing of an Al-8Zn-2Mg-2Cu alloy for enhanced properties. J. Mater. Process. Technol. 227, 110 (2016).

    CAS  Google Scholar 

  18. Y. Liu, W.J. Li, and D.M. Jiang: The effect of pre-ageing on the microstructure and properties of 7050 alloy. J. Mater. Res. 30, 3803 (2015).

    CAS  Google Scholar 

  19. G. Liu, Y.C. Lin, X.C. Zhang, and Y.Q. Jiang: Effects of two-stage creep-aging on precipitates of an Al-Cu-Mg alloy. Mater. Sci. Eng., A 614, 45 (2014).

    CAS  Google Scholar 

  20. Y.C. Lin, Y.C. Xia, Y.Q. Jiang, H.M. Zhou, and L.T. Li: Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng., A 565, 420 (2013).

    CAS  Google Scholar 

  21. Y.C. Lin, Y.Q. Jiang, X.M. Chen, D.X. Wen, and H.M. Zhou: Effect of creep-aging on precipitates of 7075 aluminum alloy. Mater. Sci. Eng., A 588. 347 (2013).

    CAS  Google Scholar 

  22. D. Bakavos, P.B. Prangnell, B. Bès, F. Eberl, and J.G. Grossmann: Microstructural interactions during stress ageing a 7475 aerospace alloy. Mater. Sci. Forum 519, 333 (2006).

    Google Scholar 

  23. W. Guo, J.Y. Guo, J.D. Wang, M. Yang, H. Li, X.Y. Wen, and J.W. Zhang: Evolution of precipitate microstructure during stress aging of an Al-Zn-Mg-Cu alloy. Mater. Sci. Eng., A 634, 167 (2015).

    CAS  Google Scholar 

  24. Y.C. Lin, J.L. Zhang, G. Liu, and Y.J. Liang: Effects of pre-treatments on aging precipitates and corrosion resistance of a creep-aged Al-Zn-Mg-Cu alloy. Mater. Des. 83, 866 (2015).

    CAS  Google Scholar 

  25. G. Fribourg, Y. Bréchet, J.L. Chemin, and A. Deschamps: Evolution of precipitate microstructure during creep of an AA7449 T7651 aluminum alloy. Metall. Mater. Trans. A 42, 3934 (2011).

    CAS  Google Scholar 

  26. L.C. Abodi, J.A. DeRose, S. Van Damme, A. Demeter, T. Suter, and J. Deconinck: Modeling localized aluminum alloy corrosion in chloride solutions under non-equilibrium conditions: Steps toward understanding pitting initiation. Electrochim. Acta 63, 169 (2012).

    CAS  Google Scholar 

  27. J.T. Burns, S. Kim, and R.P. Gangloff: Effect of corrosion severity on fatigue evolution in Al-Zn-Mg-Cu. Corros. Sci. 52, 498 (2010).

    CAS  Google Scholar 

  28. S.D. Liu, B. Chen, C.B. Li, Y. Dai, Y.L. Deng, and X.M. Zhang: Mechanism of low exfoliation corrosion resistance due to slow quenching in high strength aluminium alloy. Corros. Sci. 91, 203 (2015).

    CAS  Google Scholar 

  29. T. Marlaud, B. Malki, A. Deschamps, and B. Baroux: Electrochemical aspects of exfoliation corrosion of aluminium alloys: The effects of heat treatment. Corros. Sci. 53, 1394 (2011).

    CAS  Google Scholar 

  30. S.P. Knight, M. Salagaras, A.M. Wythe, F. De Carlo, A.J. Davenport, and A.R. Trueman: In situ x-ray tomography of intergranular corrosion of 2024 and 7050 aluminium alloys. Corros. Sci. 52, 3855 (2010).

    CAS  Google Scholar 

  31. D. Wang, D.R. Ni, and Z.Y. Ma: Effect of pre-strain and two-step aging on microstructure and stress corrosion cracking of 7050 alloy. Mater. Sci. Eng., A 494, 360 (2008).

    Google Scholar 

  32. Y.C. Lin, Y.Q. Jiang, X.C. Zhang, J. Deng, and X.M. Chen: Effect of creep-aging processing on corrosion resistance of an Al-Zn-Mg-Cu alloy. Mater. Des. 61, 228 (2014).

    CAS  Google Scholar 

  33. S. Dey, M.K. Gunjan, and I. Chattoraj: Effect of temper on the distribution of pits in AA7075 alloys. Corros. Sci. 50, 2895 (2008).

    CAS  Google Scholar 

  34. D.K. Xu, N. Birbilis, and P.A. Romesch: The effect of pre-ageing temperature and retrogression heating rate on the strength and corrosion behavior of AA7150. Corros. Sci. 54, 17 (2012).

    CAS  Google Scholar 

  35. T. Marlaud, B. Malki, C. Henon, A. Deschamps, and B. Barous: Relationship between alloy composition, microstructure and exfoliation corrosion in Al-Zn-Mg-Cu alloys. Corros. Sci. 53, 3139 (2011).

    CAS  Google Scholar 

  36. S.P. Knight, N. Birbilis, B.C. Muddle, A.R. Trueman, and S.P. Lynch: Correlations between intergranular stress corrosion cracking, grain-boundary microchemistry, and grain-boundary electrochemistry for Al-Zn-Mg-Cu alloys. Corros. Sci. 52, 4073 (2010).

    CAS  Google Scholar 

  37. A. Deschamps, G. Fribourg, Y. Brechet, J.L. Chemin, and C.R. Hutchinson: In situ evaluation of dynamic precipitation during plastic straining of an Al-Zn-Mg-Cu alloy. Acta Mater. 60, 1905 (2012).

    CAS  Google Scholar 

  38. Y.C. Lin, Y.Q. Jiang, H.M. Zhou, and G. Liu: A new creep constitutive model for 7075 aluminum alloy under elevated temperatures. J. Mater. Eng. Perform. 23, 4350 (2014).

    CAS  Google Scholar 

  39. ASTM International: Standard test methods for conducting creep, creep-rupture, and stress-rupture tests of metallic materials (2011). Available at: http://www.astm.org/Standards/E139.htm.

  40. S.J. Garcia, T.A. Markley, J.M.C. Mol, and A.E. Hughes: Unravelling the corrosion inhibition mechanisms of bi-functional inhibitors by EIS and SEM-EDS. Corros. Sci. 69, 346 (2013).

    CAS  Google Scholar 

  41. Y.C. Lin, G. Liu, M.S. Chen, Y.C. Huang, Z.G. Chen, X. Ma, and J. Li: Corrosion resistance of a two-stage stress-aged Al-Cu-Mg alloy: Effects of stress-aging temperature. J. Alloys Compd. 657, 855 (2016).

    CAS  Google Scholar 

  42. J.A. Moreto, C.E.B. Marino, W.W. Bose Filho, L.A. Rocha, and J.C.S. Fernandes: SVET, SKP and EIS study of the corrosion behaviour of high strength Al and Al-Li alloys used in aircraft fabrication. Corros. Sci. 84, 30 (2014).

    CAS  Google Scholar 

  43. M. Mouanga, M. Puiggali, and O. Devos: EIS and LEIS investigation of aging low carbon steel with Zn-Ni coating. Electrochim. Acta 106, 82 (2013).

    CAS  Google Scholar 

  44. Y.C. Lin, G. Liu, M.S. Chen, J.L. Zhang, Z.G. Chen, Y.Q. Jiang, and J. Li: Corrosion resistance of a two-stage stress-aged Al-Cu-Mg alloy: Effects of external stress. J. Alloys Compd. 661, 221 (2016).

    CAS  Google Scholar 

  45. H. Fadaee and M. Javidi: Investigation on the corrosion behaviour and microstructure of 2024-T3 Al alloy treated via plasma electrolytic oxidation. J. Alloys Compd. 604, 36 (2014).

    CAS  Google Scholar 

  46. W.R. Osorio, E.S. Freitas, and A. Garcia: EIS and potentiodynamic polarization studies on immiscible monotectic Al-In alloys. Electrochim. Acta 102, 436 (2013).

    CAS  Google Scholar 

  47. H.Q. Yang, Y. Wang, S.S. Tu, Y.M. Li, and Y. Huang: A novel study on separate and combined effects of the cathodic protection and elastic stress on corrosion behaviors of the Q235B steel in 3.5% NaCl aqueous solution. Int. J. Electrochem. Sci. 11, 3238 (2016).

    CAS  Google Scholar 

  48. L.J. Liu, P.P. Li, Y.H. Zou, K.J. Luo, F. Zhang, R.C. Zeng, and S.Q. Li. In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surf. Coat. Technol. 291, 7 (2016).

    CAS  Google Scholar 

  49. U. Trdan and J. Grum: Evaluation of corrosion resistance of AA6082-T651 aluminium alloy after laser shock peening by means of cyclic polarisation and ElS methods. Corros. Sci. 59, 324 (2012).

    CAS  Google Scholar 

  50. J.F. Chen, G.S. Frankel, J.T. Jiang, W.Z. Shao, and L. Zhen: Effect of age-forming on corrosion properties of an Al-Zn-Mg-Cu alloy. Mater. Corros. 65, 670 (2014).

    CAS  Google Scholar 

  51. J. Wang, B. Zhang, B. Wu, and X.L. Ma: Size-dependent role of S phase in pitting initiation of 2024Al alloy. Corros. Sci. 105, 183 (2016).

    CAS  Google Scholar 

  52. X.Y. Liu, M.J. Li, F. Gao, S.X. Liang, X.L. Zhang, and H.X. Cui: Effects of aging treatment on the intergranular corrosion behavior of Al-Cu-Mg-Ag alloy. J. Alloys Compd. 639, 263 (2015).

    CAS  Google Scholar 

  53. A. Chemin, D. Marques, L. Bisanha, A. de Jesus Motheo, W.W. Bose Filho, and C.O.F. Ruchert: Influence of Al7Cu2Fe intermetallic particles on the localized corrosion of high strength aluminum alloys. Mater. Des. 53, 118 (2014).

    CAS  Google Scholar 

  54. F. Andreatta, H. Terryn, and J.H.W. De Wit: Corrosion behaviour of different tempers of AA7075 aluminium alloy. Electrochim. Acta 49, 2851 (2004).

    CAS  Google Scholar 

  55. D.K. Xu, P.A. Rometsch, and N. Birbilis: Improved solution treatment for an as-rolled Al-Zn-Mg-Cu alloy. Part I. Characterisation of constituent particles and overheating. Mater. Sci. Eng., A 534, 234 (2012).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation Council of China (Grant Nos. 51375502 and 51305466), the Project of Innovation-driven Plan in Central South University (No. 2016CX008), the National Key Basic Research Program (Grant No. 2013CB035801), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2016JJ1017), and State key laboratory of High Performance Complex Manufacturing (No. zzyjkt2014-01), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y.C., Zhang, JL., Chen, MS. et al. Electrochemical corrosion behaviors of a stress-aged Al-Zn-Mg-Cu alloy. Journal of Materials Research 31, 2493–2505 (2016). https://doi.org/10.1557/jmr.2016.232

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.232

Navigation