Skip to main content
Log in

Sintering phenomena and mechanical strength of nickel based materials in direct metal laser sintering process—a molecular dynamics study

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper presents an atomistic scale model on sintering of nickel particles in direct metal laser sintering process. Both sintering phenomena and mechanical strength of sintered particles are simulated using molecular dynamics method. A two-particle atomistic model is developed to investigate the diffusion of atoms during nickel sintering. The diffusion of particle surface is higher than the particle core, with calculated activation energy of nickel particle diffusion 6.10 kJ/mol in the particle core, and 6.24 kJ/mol on the particle surface, which are reasonably in agreement with the experimental data of 7.89 kJ/mol. The sintered model shows a 5-fold twinning structure at 1200 K, and two parallel twin boundaries at 1300 K. The mechanical properties of nickel nanoparticles sintered at various heating rates are investigated using uniaxial tensile test simulations. The results show that higher heating rate during sintering increases the mechanical strength of the sintered material. Deformation mechanism of sintered structures is illustrated from the correlation between stress and dislocation evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. Wikipedia. Direct metal laser sintering. Available from: http://en.wikipedia.org/wiki/Direct_metal_laser_sintering (accessed May 7, 2016).

  2. Wikipedia. Inconel. Available from: http://en.wikipedia.org/wiki/Inconel (accessed May 7, 2016).

  3. J. Xu, R. Sakanoi, Y. Higuchi, N. Ozawa, K. Sato, T. Hashida, and M. Kubo: Molecular dynamics simulation of Ni nanoparticles sintering process in Ni/YSZ multi-nanoparticle system. J. Phys. Chem. C 117(19), 9663–9672 (2013).

    Article  CAS  Google Scholar 

  4. L. Yang: Molecular Dynamics Simulation of Nanosintering Processes (University of Missouri, Columbia, 2010).

    Book  Google Scholar 

  5. B. Cheng and A.H.W. Ngan: The sintering and densification behaviour of many copper nanoparticles: A molecular dynamics study. Comput. Mater. Sci. 74, 1–11 (2013).

    Article  CAS  Google Scholar 

  6. B. Cheng and A.H.W. Ngan: Thermally induced solid-solid structural transition of copper nanoparticles through direct geometrical conversion. J. Chem. Phys. 138(16), 164314 (2013).

    Article  Google Scholar 

  7. B.J. Henz, T. Hawa, and M. Zachariah: Molecular dynamics simulation of the kinetic sintering of Ni and Al nanoparticles. Mol. Simul. 35(10–11), 804–811 (2009).

    Article  CAS  Google Scholar 

  8. Y. Zhang, L. Wu, H. El-Mounayri, K. Brand, and J. Zhang: Molecular dynamics study of the strength of laser sintered iron nanoparticles. Procedia Manufacturing 1, 296–307 (2015).

    Article  Google Scholar 

  9. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995).

    Article  CAS  Google Scholar 

  10. G. Bonny, R.C. Pasianot, and L. Malerba: Fe–Ni many-body potential for metallurgical applications. Modell. Simul. Mater. Sci. Eng. 17(2), 025010 (2009).

    Article  Google Scholar 

  11. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B: Condens. Matter Mater. Phys. 29(12), 6443–6453 (1984).

    Article  CAS  Google Scholar 

  12. R.L. Coble: Sintering crystalline solids. I. Intermediate and final state diffusion models. J. Appl. Phys. 32(5), 787–792 (1961).

    Article  CAS  Google Scholar 

  13. H. Pan, S.H. Ko, and C.P. Grigoropoulos: The solid-state neck growth mechanisms in low energy laser sintering of gold nanoparticles: A molecular dynamics simulation study. J. Heat Transfer 130(9), 092404–092404 (2008).

    Article  Google Scholar 

  14. LAMMPS, http://www.cs.sandia.gov/∼sjplimp/lammps.html (accessed May 7, 2016).

  15. R.M. German and Z.A. Munir: Surface area reduction during isothermal sintering. J. Am. Ceram. Soc. 59(9–10), 379–383 (1976).

    Article  CAS  Google Scholar 

  16. A.G. Elliot and Z.A. Munir: The sintering of nickel/aluminium spheres to nickel plates. J. Mater. Sci. 3(2), 150–157 (1968).

    Article  CAS  Google Scholar 

  17. B. Qian, L. Taimisto, A. Lehti, H. Piili, O. Nyrhilä, A. Salminen, and Z. Shen: Monitoring of temperature profiles and surface morphologies during laser sintering of alumina ceramics. J. Asian Ceram. Soc. 2(2), 123–131 (2014).

    Article  Google Scholar 

  18. A. Moitra, S. Kim, S.-G. Kim, S.J. Park, R.M. German, and M.F. Horstemeyer: Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation. Acta Mater. 58(11), 3939–3951 (2010).

    Article  CAS  Google Scholar 

  19. R.M. German: Chapter Seven—Thermodynamic, and kinetic treatments. In Sintering: from Empirical Observations to Scientific Principles (Butterworth-Heinemann, Boston, 2014); pp. 183–226.

    Chapter  Google Scholar 

  20. B. Cheng and A.H.W. Ngan: The crystal structures of sintered copper nanoparticles: A molecular dynamics study. Int. J. Plast. 47, 65–79 (2013).

    Article  Google Scholar 

  21. B. Cheng and A.H.W. Ngan: Crystal plasticity of Cu nanocrystals during collision. Mater. Sci. Eng., A 585, 326–334 (2013).

    Article  CAS  Google Scholar 

  22. S. Alexander and A. Karsten: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18(8), 085001 (2010).

    Article  Google Scholar 

  23. Wikipedia. Nickel. Available from: http://en.wikipedia.org/wiki/Nickel (accessed May 7, 2016).

Download references

ACKNOWLEDGMENT

J.Z. acknowledges Walmart Foundation’s support of research project “Optimal Plastic Injection Molding Tooling Design and Production through Advanced Additive Manufacturing”. We also thank the critical comments by the anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, J. Sintering phenomena and mechanical strength of nickel based materials in direct metal laser sintering process—a molecular dynamics study. Journal of Materials Research 31, 2233–2243 (2016). https://doi.org/10.1557/jmr.2016.230

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.230

Navigation