Skip to main content
Log in

Parametric optimization of electrical discharge machining process on α–β brass using grey relational analysis

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In the present work, a multi response optimization technique based on Taguchi method coupled with grey relational analysis is used for electrical discharge machining operations on duplex (α–β) brass. Stir casting technique was used to fabricate the duplex brass plates. The mechanical properties of the material are reported. Experiments were conducted with three machining variables such as current, pulse-on time and spark voltage and planned as per Taguchi technique. Material removal rate (MRR), electrode wear rate (EWR), and surface roughness (SR) are chosen as output parameters for this study. Results showed that, peak current and spark voltage were the significant parameters to affect MRR, EWR, and SR as per grey relational grade. The optimal combination parameters were identified as A3B3C2 i.e., pulse current at 14 A, pulse on-time at 200 µs, and voltage at 50 V. Analysis of variance was used for analyzing the results. The confirmation tests were performed to validate the results obtained by grey relational analysis and the improvement was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. A. Moshkovich, V. Perfilyev, I. Lapsker, and L. Rapoport: Friction, wear and plastic deformation of Cu and α/β brass under lubrication conditions. Wear 320, 34 (2014).

    Article  CAS  Google Scholar 

  2. M. Amirat, H. Zaïdi, A. Djamaï, D. Necib, and D. Eyidi: Influence of the gas environment on the transferred film of the brass (Cu64Zn36)/steel AISI 1045 couple. Wear 267, 433 (2009).

    Article  CAS  Google Scholar 

  3. Y. Gao, K. Nakata, K. Nagatsuka, Y. Shibata, and M. Amano: Optimizing tool diameter for friction stir welded brass/steel lap joint. J. Mater. Process. Technol. 229, 313 (2016).

    Article  CAS  Google Scholar 

  4. S. Li, H. Imai, H. Atsumi, and K. Kondoh: Contribution of Ti addition to characteristics of extruded Cu40Zn brass alloy prepared by powder metallurgy. Mater. Des. 32, 192 (2011).

    Article  Google Scholar 

  5. D. Du, G. Guan, A. Gagnoud, Y. Fautrelle, Z. Ren, X. Lu, H. Wang, Y. Dai, Q. Wang, and X. Li: Effect of a high magnetic field on the growth of ε-CuZn5 dendrite during directionally solidified Zn-rich Zn–Cu alloys. Mater. Charact. 111, 31–42 (2016).

    Article  CAS  Google Scholar 

  6. R. Khanna, A. Kumar, M. Pal Garg, A. Singh, and N. Sharma: Multiple performance characteristics optimization for Al 7075 on electric discharge drilling by Taguchi grey relational theory. Int. J. Ind. Eng. 11(4), 459 (2015).

    Article  Google Scholar 

  7. C. Vilarinho, J.P. Davim, D. Soares, F. Castro, and J. Barbosa: Influence of the chemical composition on the machinability of brasses. J. Mater. Process. Technol. 170, 441–447 (2005).

    Article  CAS  Google Scholar 

  8. K. Peng, L. Su, L.L. Shawb, and K-W. Qian: Grain refinement and crack prevention in constrained groove pressing of two-phase Cu–Zn alloys. Scr. Mater. 56, 987–990 (2007).

    Article  CAS  Google Scholar 

  9. H. Imai, Y. Kosaka, A. Kojima, S. Li, K. Kondoh, J. Umeda, and H. Atsumi: Characteristics and machinability of lead-free P/M Cu60–Zn40 brass alloys dispersed with graphite. Powder Technol. 198, 417–421 (2010).

    Article  CAS  Google Scholar 

  10. A.M. Nanimina, A.M. Abdul-Rani, F. Ahmad, A. Zainuddin, and S.H.L. Jason: Effects of electro-discharge machining on aluminum metal matrix composite. J. Appl. Sci. 11, 1668 (2011).

    Article  CAS  Google Scholar 

  11. P. Senthil, V. Sekar, and A.K. Singh: Parametric optimization of EDM on Al–Cu/TiB2 in situ metal matrix composites using TOPSIS method. Int. J. Mach. Mach. Mater. 16(1), 80 (2014).

    Google Scholar 

  12. N. Radhika, G.K. Chandran, P. Shivaram, and K.T. Vijay Kumar: Multi-objective optimization of EDM parameters using grey relational analysis. J. Eng. Sci. Technol. 10(1), 1 (2015).

    Google Scholar 

  13. S.S. Sidhu, S. Kumar, and A. Batish: Electric discharge machining of 10 vol% Al2O3/Al metal matrix composite—An experimental study. Mater. Sci. Forum 751, 9 (2013).

    Article  Google Scholar 

  14. S. Dhar, R. Purohit, N. Saini, A. Sharma, and G. Hemath Kumar: Mathematical modeling of electric discharge machining of cast Al–4Cu–6Si alloy–10 wt% SiCP composites. J. Mater. Process. Technol. 194(1–3), 24 (2007).

    Article  CAS  Google Scholar 

  15. N.V. Rengasamy, M. Rajkumar, and S. Senthil Kumaran: An analysis of mechanical properties and optimization of EDM process parameters of Al 4032 alloy reinforced with Zrb2 and Tib2 in situ composites. J. Alloys Compd. 662, 325 (2015).

    Article  Google Scholar 

  16. M. Hourmand, S. Farahany, A.A.D. Sarhan, and M.Y. Noordin: Investigating the electrical discharge machining (EDM) parameter effects on Al–Mg2Si metal matrix composite (MMC) for high material removal rate (MRR) and less EWR–RSM approach. Int. J. Adv. Des. Manuf. Technol. 77, 831 (2015).

    Article  Google Scholar 

  17. S. Singh: Optimization of machining characteristics in electric discharge machining of 6061Al/Al2O3p/20P composites by grey relational analysis. Int. J. Adv. Des. Manuf. Technol. 63(9), 1191 (2012).

    Article  Google Scholar 

  18. M. Balamurugan, M. Biswanath, and G. Sukamal: Optimisation of machining parameters for hard machining: Grey relational theory approach and ANOVA. Int. J. Adv. Des. Manuf. Technol. 45, 1068 (2009).

    Article  Google Scholar 

  19. T.A. El-Taweel: Multi-response optimization of EDM with Al–Cu–Si–TiC P/M composite electrode. Int. J. Adv. Des. Manuf. Technol. 44, 100 (2009).

    Article  Google Scholar 

  20. K.M. Pate, P.M. Pandeya, and P. Venkateswara Rao: Determination of an optimum parametric combination using a surface roughness prediction model for EDM of Al2O3/SiCw/TiC ceramic composite. Mater. Manuf. Processes 24, 675 (2009).

    Article  Google Scholar 

  21. P. Narender Singh, K. Raghukandan, and B.C. Pai: Optimization by grey relational analysis of EDM parameters on machining Al–10% SiC composites. J. Mater. Process. Technol. 155, 1658 (2004).

    Article  Google Scholar 

  22. M. Ravichandran, A. Naveen Sait, and V. Anandakrishnan: Workability studies on Al–TiO2–Gr powder metallurgy composites under tri-axial stress state during cold upsetting. Mater. Res. 17(6), 1489 (2014).

    Article  Google Scholar 

  23. C. Nobel, U. Hofmann, F. Klocke, D. Veselovac, and H. Pul: Application of a new, severe-condition friction test method to understand the machining characteristics of Cu–Zn alloys using coated cutting tools. Wear 344, 58 (2015).

    Article  Google Scholar 

  24. Y-f. Tzeng and F-c. Chen: Multi-objective optimisation of high-speed electrical discharge machining process using a Taguchi fuzzy-based approach. Mater. Des. 28, 1159 (2007).

    Article  CAS  Google Scholar 

  25. C-C. Wang, H-M. Chow, L-D. Yang, and C-T. Lu: Recast layer removal after electrical discharge machining via Taguchi analysis: A feasibility study. J. Mater. Process. Technol. 209, 4134 (2009).

    Article  CAS  Google Scholar 

  26. S. Tripathy and D.K. Tripathy: Multi-attribute optimization of machining process parameters in powder mixed electro-discharge machining using TOPSIS and grey relational analysis. Int. J. Eng. Sci. Technol. 19, 62 (2016).

    Google Scholar 

  27. R. Bobbili, V. Madhu, and A.K. Gogia: Multi response optimization of wire-EDM process parameters of ballistic grade aluminium alloy. Int. J. Eng. Sci. Technol. 18(4), 720 (2015).

    Google Scholar 

  28. G. Selvakumar, G. Sornalatha, S. Sarkar, and S. Mitra: Experimental investigation and multi-objective optimization of wire electrical discharge machining (WEDM) of 5083 aluminum alloy. Trans. Nonferrous Met. Soc. China 24, 373 (2014).

    Article  CAS  Google Scholar 

  29. B.C. Kandpal, J. Kumar, and H. Singh: Machining of aluminium metal matrix composites with Electrical discharge machining—A review. Mater. Today: Proceed. 2, 1665 (2015).

    Google Scholar 

  30. A. Pramanik, A.K. Basak, M.N. Islam, and G. Littlefair: Electrical discharge machining of 6061 aluminium alloy. Trans. Nonferrous Met. Soc. China 25, 2866 (2015).

    Article  CAS  Google Scholar 

  31. N. Mathan Kumar, S. Senthil Kumaran, and L.A. Kumaraswamidhas: An investigation of mechanical properties and material removal rate, tool wear rate in EDM machining process of AL2618 alloy reinforced with Si3N4, AlN and ZrB2 composites. J. Alloys Compd. 650, 318 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Marichamy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marichamy, S., Saravanan, M., Ravichandran, M. et al. Parametric optimization of electrical discharge machining process on α–β brass using grey relational analysis. Journal of Materials Research 31, 2531–2537 (2016). https://doi.org/10.1557/jmr.2016.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.213

Navigation