Skip to main content
Log in

Synthesis of ultra-refractory transition metal diboride compounds

  • Focus Section Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This paper critically evaluates methods used to synthesize boride compounds with emphasis on diborides of the early transition metals. The earliest reports of the synthesis of boride ceramics used impure elemental powders to produce multiphase reaction products; phase-pure borides were only synthesized after processes were established to purify elemental boron. Carbothermal reduction of the corresponding transition metal oxides emerged as a viable production route and continues to be the primary method for the synthesis of commercial transition metal diboride powders. Even though reaction-based processes and chemical synthesis methods are mainly used for research studies, they are powerful tools for producing diborides because they provide the ability to tailor purity and particle size. The choice of synthesis method requires balancing factors that include cost, purity, and particle size with the performance needed in expected applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Unless otherwise noted, melting temperatures are from Alloy Phase Diagrams: ASM Handbook, Vol. 3 (ASM International, Materials Park, OH, 1992).

  2. All data on space groups were taken from the PDF-2 Database (International Centre for Diffraction Data, Newtown Square, PA).

  3. S. Madtha, C. Lee, and K.S. Ravi Chandran: Physical and mechanical properties of nanostructured titanium boride (TiB) ceramic. J. Am. Ceram. Soc. 91, 1319 (2008).

    Article  CAS  Google Scholar 

  4. L. Sun, Y. Gao, B. Xiao, Y. Li, and G. Wang: Anisotropic elastic and thermal properties of titanium borides by first principles calculations. J. Alloys Compd. 579, 457 (2013).

    Article  CAS  Google Scholar 

  5. K.B. Panda and K.S. Ravi Chandran: First principles determination of elastic constants and chemical bonding of titanium boride (TiB) on the basis of density functional theory. Acta Mater. 54, 1641 (2006).

    Article  CAS  Google Scholar 

  6. A.L. Chamberlain, W.G. Fahrenholtz, G.E. Hilmas, and D.T. Ellerby: High strength ZrB2-based ceramics. J. Am. Ceram. Soc. 87, 1170 (2004).

    Article  CAS  Google Scholar 

  7. N.L. Okamoto, M. Kusakari, K. Tanaka, H. Inui, and S. Otani: Anisotropic elastic constants and thermal expansivities in monocrystal CrB2, TiB2, and ZrB2. Acta Mater. 58, 76 (2010).

    Article  CAS  Google Scholar 

  8. P. Rogl and P.E. Potter: A critical review and thermodynamic calculation of the binary system: Hafnium–boron. CALPHAD 12, 207 (1988).

    Article  CAS  Google Scholar 

  9. E. Rudy: Ternary Phase Equilibria in Transition Metal–Boron–Carbon–Silicon Systems: Part V. Compendium of Phase Diagram Data. Technical Report Number AFML-TR-65-2 (Air Force Materials Laboratory, Wright-Patterson Air Force Base, May 1969).

  10. K. Sairam, J.K. Sonber, T.S.R.Ch. Murthy, C. Subramanian, R.K. Fortedar, and R.C. Hubi: Reaction spark plasma sintering of niobium diboride. Int. J. Refract. Met. Hard Mater. 43, 259 (2014).

    Article  CAS  Google Scholar 

  11. M. Zhang, H. Wang, H. Wang, T. Cui, and Y. Ma: Structural modifications and mechanical properties of molybdenum borides from first principles. J. Phys. Chem. C 114, 6722 (2010).

    Article  CAS  Google Scholar 

  12. H-H. Chen, Y. Bi, Y. Cheng, G. Ji, and L. Cai: Elastic stability and electronic structure of tantalum boride investigated via first-principles density functional calculations. J. Phys. Chem. Solids 73, 1197 (2012).

    Article  CAS  Google Scholar 

  13. X. Zhang, G.E. Hilmas, and W.G. Fahrenholtz: Synthesis, densification, and mechanical properties of TaB2. Mater. Lett. 62, 4251 (2008).

    Article  CAS  Google Scholar 

  14. W.J. Zhao and Y.X. Wang: Structural, mechanical, and electronic properties of TaB2, TaB, IrB2, and IrB: First principles calculations. J. Solid State Chem. 182, 2880 (2009).

    Article  CAS  Google Scholar 

  15. H. Duschanek and P. Rogl: Critical assessment and thermodynamic calculation of the binary system boron-tungsten. J. Phase Equilib. 16, 150 (1995).

    Article  CAS  Google Scholar 

  16. Y. Chen, D. He, J. Qin, Z. Kou, S. Wang, and J. Wang: Ultrahigh-pressure densification of nanocrystalline WB ceramics. J. Mater. Res. 25, 637 (2010).

    Article  CAS  Google Scholar 

  17. E. Zhao, J. Meng, Y. Ma, and Z. Wu: Phase stability and mechanical properties of tungsten borides from first principles calculations. Phys. Chem. Chem. Phys. 12, 13158 (2010).

    Article  CAS  Google Scholar 

  18. H. Guo, Z. Li, J. Zhang, H. Niu, F. Gao, R.E. Ewing, and J. Lian: Origin of the rigidity in tetragonal MB (M = Cr, Mo, and W) and softening of defective WB: First principles investigations. Comput. Mater. Sci. 53, 460 (2012).

    Article  CAS  Google Scholar 

  19. J. Qin, D. He, J. Wang, L. Fang, Y. Li, J. Hu, Z. Kou, and Y. Bi: Is rhenium diboride a superhard material? Adv. Mater. 20, 4780 (2008).

    Article  CAS  Google Scholar 

  20. M. Hebbache, L. Suparevic, and D. Zivkovic: A new superhard material: Osmium diboride OsB2. Solid State Commun. 139, 227 (2006).

    Article  CAS  Google Scholar 

  21. H-Y. Chung, Y-M. Yang, S.H. Tolbert, and R.B. Kaner: Anisotropic mechanical properties of ultra-incompressible hard osmium diboride. J. Mater. Res. 23, 1797 (2008).

    Article  CAS  Google Scholar 

  22. A.L. Ivanovskii: Mechanical, and electronic properties of diborides of transition 3d–5d metals from first principles: Toward search of novel ultra-incompressible and superhard materials. Progr. Mater. Sci. 57, 184 (2012).

    Article  CAS  Google Scholar 

  23. Y. Zhou, J. Wang, Z. Li, X. Sun, and J. Wang: First-principles investigation on anisotropic chemical bonding and elastic properties of transition metal diborides TMB2 (TM = Zr, Hf, Nb, Ta, and Y). In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y. Zhou eds.; Wiley: New York, 2014; pp. 60–82.

    Google Scholar 

  24. A.L. Ivanovskii, I.R. Shein, and N.I. Medvedeva: Non-stoichiometric s-, p-, and d-metal diborides: Synthesis, properties, and simulation. Russ. Chem. Rev. 77, 467 (2008).

    Article  CAS  Google Scholar 

  25. P. Vajeeston, P. Ravindran, C. Ravi, and R. Asokamani: Electronic structure, bonding, and ground-state properties of AlB2-type transition-metal diborides. Phys. Rev. B: Condens. Matter Mater. Phys. 63, 045115–1 (2001).

    Article  CAS  Google Scholar 

  26. G. Harrington, G.E. Hilmas, and W.G. Fahrenholtz: Effect of carbon on the thermal and electrical transport properties of zirconium diboride. J. Eur. Ceram. Soc. 35, 887 (2015).

    Article  CAS  Google Scholar 

  27. S. Guo, T. Nishimura, and Y. Kagawa: Preparation of zirconium diboride ceramics by reactive spark plasma sintering of zirconium hydride-boron powders. Scr. Mater. 65, 1018 (2001).

    Article  CAS  Google Scholar 

  28. J.M. Lonergan, W.G. Fahrenholtz, and G.E. Hilmas: Zirconium diboride with high thermal conductivity. J. Am. Ceram. Soc. 97, 1689 (2014).

    Article  CAS  Google Scholar 

  29. L. Zhang, D.A. Pejaković, J. Marschall, and M. Gasch: Thermal and electrical transport properties of spark plasma-sintered HfB2 and ZrB2 ceramics. J. Am. Ceram. Soc. 94, 2562 (2011).

    Article  CAS  Google Scholar 

  30. R.A. Andrievski: Superhard materials based on nanostructured high-melting point compounds: Achievements and perspectives. Int. J. Refract. Met. Hard Mater. 19, 447 (2001).

    Article  CAS  Google Scholar 

  31. B. Basu, G.B. Raju, and A.K. Suri: Processing and properties of monolithic TiB2-based materials. Int. Mater. Rev. 51, 352 (2006).

    Article  CAS  Google Scholar 

  32. X. Zhang, X. Luo, J. Han, J. Li, and W. Han: Electronic structure, elasticity, and hardness of diborides of zirconium and hafnium: First principles calculations. Comput. Mater. Sci. 4, 411 (2008).

    Article  CAS  Google Scholar 

  33. J.W. Lawson, C.W. Bauschlicher, Jr., and M.S. Daw: Ab-initio computations of electronic, mechanical, and thermal properties of ZrB2 and HfB2. J. Am. Ceram. Soc. 94, 3494 (2011).

    Article  CAS  Google Scholar 

  34. S.Q. Guo: Densification of ZrB2-based composites and their mechanical and physical properties: A review. J. Eur. Ceram. Soc. 29, 995 (2009).

    Article  CAS  Google Scholar 

  35. E. Wuchina, M. Opeka, S. Causey, K. Buesking, J. Spain, A. Cull, J. Routbort, and F. Guitierrez-Mora: Designing of ultrahigh-temperature applications: The mechanical and thermal properties of HfB2, HfCx, HfNx, and αHf(N). J. Mater. Sci. 39, 5939 (2004).

    Article  CAS  Google Scholar 

  36. P. Kolodziej, J. Salute, and D.L. Keese: First Flight Demonstration of a Sharp Ultra-High Temperature Ceramic Nosetip. NASA Technical Report TM-112215 (December 1997).

  37. E.L. Courtright, H.C. Graham, A.P. Katz, and R.J. Kerans: Ultra-High Temperature Assessment Study–Ceramic Matrix Composites. Final Report WL-TR-91-4061 (Wright Laboratory Materials Directorate, Wright Patterson Air Force Base, Dayton, OH, September 1992).

    Google Scholar 

  38. D.M. Van Wie, D.G. Drewry, Jr., D.E. King, and C.M. Hudson: The hypersonic environment: Required operating conditions and design challenges. J. Mater. Sci. 39, 5915 (2004).

    Article  Google Scholar 

  39. T.A. Jackson, D.R. Eklund, and A.J. Fink: High speed propulsion: Performance advantage of advanced materials. J. Mater. Sci. 39, 5905 (2004).

    Article  CAS  Google Scholar 

  40. K-I. Takagi: Development and application of high strength ternary boride base cermets. J. Solid State Chem. 179, 2809 (2006).

    Article  CAS  Google Scholar 

  41. B. Yuan, G-J. Zhang, Y-M. Kan, and P-L. Wang: Reactive synthesis and mechanical properties of Mo2NiB2 based hard alloy. Int. J. Refract. Met. Hard Mater. 28, 291 (2010).

    Article  CAS  Google Scholar 

  42. G.B. Raju and B. Basu: Development of high temperature TiB2-based ceramics. Key Eng. Mater. 395, 894 (2009).

    Google Scholar 

  43. B.R. Golla, T. Bhandari, A. Mukopadhyay, and B. Basu: Titanium diboride. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, W.G. Fahrenholtz, E. Wuchina, W.E. Lee, and Y. Zhou eds.; Wiley-Blackwell: New York, 2015; pp. 316–360.

    Google Scholar 

  44. A.K. Suri, N. Krishnamurthy, and I.S. Batra: Materials issues in fusion reactors. In Journal of Physics: Conference Series, 208, Paper Number 012001, 2010.

  45. H.F. Jackson, D.D. Jayaseelan, W.E. Lee, M.J. Reese, F. Inam, D. Manara, C.P. Casoni, F. De Bruycker, and K. Boboridis: Laser melting of spark plasma-sinered zirconium carbide: Thermophysical properties of a generation IV very high-temperature reactor material. Int. J. Appl. Ceram. Technol. 7, 316 (2010).

    Article  CAS  Google Scholar 

  46. J. She, Y. Zhan, M. Pang, C. Li, and W. Yang: In-situ synthesized (ZrB2 + ZrC) hybrid short fibers reinforced Zr matrix composites for nuclear applications. Int. J. Refract. Met. Hard Mater. 29, 401 (2011).

    Article  CAS  Google Scholar 

  47. E. Wuchina, E. Opila, M. Opeka, W. Fahrenholtz, and I. Talmy: UHTCs: Ultra-high temperature ceramic materials for extreme environment application. Interface, 16, 30 (2007).

    CAS  Google Scholar 

  48. M.M. Opeka, I.G. Talmy, and J.A. Zaykoski: Oxidation-based materials selection for 2000 °C+ hypersonic aerosurfaces: Theoretical considerations and historical experience. J. Mater. Sci. 39, 5887 (2004).

    Article  CAS  Google Scholar 

  49. T.H. Squire and J. Marschall: Material property requirements for analysis and design of UHTC components in hypersonic applications. J. Eur. Ceram. Soc. 30, 2239 (2010).

    Article  CAS  Google Scholar 

  50. M.J. Gasch, D.T. Ellerby, and S.M. Johnson: Ultra-high temperature ceramic composites. In Handbook of Ceramic Composites, N.P. Bansal ed.; Kluwer Academic Publishers: Boston, 2005; pp. 197–224.

    Chapter  Google Scholar 

  51. R. Telle, L.S. Sigl, and K. Takagi: Boride-based hard materials. In Handbook of Ceramic Hard Materials, R. Riedel ed.; Wiley-VCH: Weinheim, Germany, 2000; pp. 802–945.

    Chapter  Google Scholar 

  52. P.H. Mayrhofer, C. Mitterer, L. Hultman, and H. Clemens: Microstructural design of hard coatings. Prog. Mater. Sci. 51, 1032 (2006).

    Article  CAS  Google Scholar 

  53. Z. Xie, T. Zhou, and Y. Gou: Synthesis and characterization of zirconium diboride ceramic precursor. Ceram. Int. 41, 6226 (2015).

    Article  CAS  Google Scholar 

  54. G-J. Zhang, H-T. Liu, W-W. Wu, J. Zou, D-W. Ni, W-M. Guo, J-X. Liu, and X-G. Wang: Reactive processes for diboride-based ultra-high temperature ceramics. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, W.G. Fahrenholtz, E. Wuchina, W.E. Lee, and Y. Zhou eds.; Wiley-Blackwell: New York, 2015; pp. 33–59.

    Google Scholar 

  55. H. Moissan: Nouvelles Reserches sur le Chrome. C. R. Séances 119, 185 (1894).

    Google Scholar 

  56. H. Moissan: Reserches sur le tungsten. C. R. Séances 123, 13 (1896).

    Google Scholar 

  57. H. Moissan: Préparation et Properiétès du Titane. C. R. Séances 120, 290 (1895).

    CAS  Google Scholar 

  58. S.A. Tucker and H.R. Moody: The preparation of a new metal boride. Proc. Chem. Soc., London 17, 129 (1901).

    Google Scholar 

  59. S.A. Tucker and H.R. Moody: The preparation of some new metal borides. J. Chem. Soc. 81, 14 (1902).

    Article  CAS  Google Scholar 

  60. E. Wedekind: Synthese von Boriden im Elektrischen Vakuumofen. Ber. Dtsch. Chem. Ges. 46, 1198 (1913).

    Article  CAS  Google Scholar 

  61. P.M. McKenna: Tantalum carbide: Its relation to other hard refractory compounds. Ind. Eng. Chem. 28, 767 (1936).

    Article  CAS  Google Scholar 

  62. C. Agte and K. Moers: Methoden zur Reindarstellung hochschmelzender carbide, nitride und boride und Beschreibung einiger ihrer Eigenschaften. Zeitschrift für Anorganische und Allgemeine Chemie 198, 233 (1931).

    Article  CAS  Google Scholar 

  63. D. Coster and G. Hervey: On the new element hafnium. Nature 111, 185 (1923).

    Google Scholar 

  64. R. Kiessling: A method for preparing boron of high purity. Acta Chem. Scand. 2, 707–712 (1948).

    Article  CAS  Google Scholar 

  65. R. Kiessling: The borides of tantalum. Acta Chem. Scand. 3, 603 (1949).

    Article  CAS  Google Scholar 

  66. R. Kiessling: The binary system chromium–boron. Acta Chem. Scand. 3, 595 (1949).

    Article  CAS  Google Scholar 

  67. R. Kiessling: The crystal structures of molybdenum and tungsten borides. Acta Chem. Scand. 1, 893 (1947).

    Article  CAS  Google Scholar 

  68. R. Kiessling: The binary system zirconium–boron. Acta Chem. Scand. 3, 90 (1949).

    Article  CAS  Google Scholar 

  69. P. Peshev, G. Bliznakov, and L. Leyarovska: On the preparation of some chromium, molybdenum, and tungsten borides. J. Less-Common Met. 13, 241 (1967).

    Article  CAS  Google Scholar 

  70. P. Peshev and G. Bliznakov: On the borothermic preparation of titanium, ziroconium, and hafnium borides. J. Less-Common Met. 14, 23 (1967).

    Article  Google Scholar 

  71. P. Peshev, L. Leyarovska, and G. Bliznakov: On the borothermic preparation of some vanadium, niobium, and tantalum borides. J. Less-Common Met. 15, 259 (1968).

    Article  CAS  Google Scholar 

  72. G. Bliznakov and P. Peshev: A thermodynamic study of the reactions in the chemical transport of boron. J. Less-Common Met. 47, 61 (1976).

    Article  CAS  Google Scholar 

  73. Y.B. Kuz’ma, T.I. Serebryakova, and A.M. Plakhina: Polymorphic transformations of W2B5. Zh. Neorg. Khim. 12, 559 (1968).

    Google Scholar 

  74. J.A. Nelson, T.A. Willmore, and R.C. Womeldorph: Refractory bodies composed of boron and titanium carbides bonded with metals. J. Electrochem. Soc. 98, 465 (1951).

    Article  CAS  Google Scholar 

  75. G.A. Meerson, G.V. Samsonov, R.B. Kotel’nikov, and N.Y. Tsitina: Vacuum thermal production of borides of refractory metals and investigation of several boride systems. Sbornik Nauch Trudov Moskov. Univ. Tsvetnykh Metal. I Zolota 25, 209 (1955).

    Google Scholar 

  76. R. Meyer and H. Pastor: The borides of titanium and zirconium preparation, properties, and applications. Bull. Soc. Fr. Ceram. 66, 59 (1965).

    Google Scholar 

  77. R. Thompson: The chemistry of metal borides and related compounds. In Progress in Boron Chemistry, Vol. 2, R.J. Brotherson and H. Steinberg eds.; Permangon Press: Oxford, UK, 1970; pp. 173–230.

    Google Scholar 

  78. L.Ya. Markovskii and N.V. Verkshina: A magnesium thermic method for the preparation of metal borides. Zh. Prikl. Khim. 40, 1824 (1967).

    CAS  Google Scholar 

  79. J.L. Andrieux: Making metallic powders by electrolysis of fused salts. Rev. Metall. 45, 49 (1948).

    Article  CAS  Google Scholar 

  80. J.T. Norton, H. Blumenthal, and S.J. Sindeband: Structure of diborides of titanium, zirconium, columbium, tantalum and vanadium. Met. Trans. 185, 749 (1949).

    Google Scholar 

  81. A. Roos: Boron derivatives, metallic borides, and their uses. Chim. Ind. 82, 339 (1959).

    CAS  Google Scholar 

  82. J.J. Gebhardt and R.F. Cree: Vapor-deposited borides of group IVA metals. J. Am. Ceram. Soc. 48, 262 (1965).

    Article  CAS  Google Scholar 

  83. R.H. Valentine, T.F. Jambois, and J.L. Margrave: Thermodynamic properties of inorganic substances VII: The high temperature heat content of zirconium diboride. J. Chem. Eng. Data 9, 182 (1964).

    Article  CAS  Google Scholar 

  84. D. Kalish and E.V. Clougherty: Densification mechanisms in high-pressure hot-pressing of HfB2. J. Am. Ceram. Soc. 52, 26 (1969).

    Article  CAS  Google Scholar 

  85. D. Kalish, E.V. Clougherty, and K. Kreder: Strength, fracture mode, and thermal stress resistance of HfB2 and ZrB2. J. Am. Ceram. Soc. 52, 30 (1969).

    Article  CAS  Google Scholar 

  86. E. Rudy, St. Windisch, and Y.A. Chang: Ternary Phase Equilibria in Transition Metal–Boron–Carbon–Silicon Systems: Part I. Related Binary Systems, Volume I. Mo–C System. Technical Report Number AFML-TR-65-2 (Air Force Materials Laboratory, Wright-Patterson Air Force Base, January 1965).

  87. R. Naslain, J. Etourneau, and P. Hagenmuller: Alkali metal borides. In Boron and Refractory Borides, V.I. Markovich ed.; Springer-Verlag: Berlin, 1977; pp. 262–292.

    Chapter  Google Scholar 

  88. R. Naslain, A. Guette, and P. Hagenmuller: Crystal chemistry of some boron-rich phases. J. Less-Common Met. 47, 1 (1976).

    Article  CAS  Google Scholar 

  89. J. Etourneau, J.P. Mercurio, R. Naslain, and P. Hagenmuller: Comparative study of the thermal stability of some rare-earth borides. C. R. Seances Acad. Sci., Ser. C 274, 1688 (1972).

    CAS  Google Scholar 

  90. G.V. Samsonov and V.S. Nesphor: Alloys of rare metals with boron and silicon for some radio- and electrotechnical application. In Redkie Metally I Splavy, Trudy Pervogo Vseoyuz. Soveshchaniya po Splavam Redkikh Metal., Akad. Nauk S.S.S.R., Inst. Met. Im. A.A. Baikova, Moscow, 1957; p. 392.

  91. P. Rogl and H. Nowotny: Structural chemistry of ternary metal borides: Rare earth metal-noble metal-boron. Rare Earths Mod. Sci. Technol. 2, 173 (1980).

    Article  CAS  Google Scholar 

  92. P. Rogl and H. Nowotny: Structural chemistry of ternary metal borides. J. Less-Common Met. 61, 39 (1978).

    Article  CAS  Google Scholar 

  93. R. Thomson: Production, fabrication, and uses of borides. In The Physics and Chemistry of Carbides, Nitrides and Borides, R. Freer ed.; Kluwer Academic Publishers: Dordrecht, 1990; pp. 113–120.

    Chapter  Google Scholar 

  94. T. Lundström: Transition metal borides. In Boron and Refractory Borides, V.I. Markovich ed.; Springer-Verlag: Berlin, 1977; pp. 351–376.

    Chapter  Google Scholar 

  95. C. Mroz: Zirconium diboride. Am. Ceram. Soc. Bull. 73, 141 (1994).

    Google Scholar 

  96. J.J. Kim and C.H. McMurtry: Titanium diboride powder production for engineered ceramics. Ceram. Eng. Sci. Proc. 6, 1313 (1985).

    Article  CAS  Google Scholar 

  97. P. Schwarzkopf and R. Kieffer: Refractory Hard Metals: Borides, Carbides, Nitrides, and Silicides, Ch. 6: Zirconium carbide (The MacMillan Company, New York, 1953).

    Google Scholar 

  98. G.J.K. Harrington, J. Lonergan, W.G. Fahrenholtz, and G.E. Hilmas: Processing for improved thermal conductivity of zirconium diboride. In 12th International Conference on Ceramic Processing Science (ICCPS-12), Portland, OR, August 4–7, 2013.

  99. Hafnium. In CRC Handbook of Chemistry and Physics, 62nd ed., R.C. Weast and M.J. Astle, eds. (CRC Press, Inc.: Boca Raton, 1983); p. B–19.

  100. J.M. Lonergan, W.G. Fahrenholtz, and G.E. Hilmas: Thermal properties of Hf-Doped ZrB2 ceramics. J. Am. Ceram. Soc. 98, 2689 (2015).

    Article  CAS  Google Scholar 

  101. H. Zhao, Y. He, and Z.Z. Jin: Preparation of zirconium diboride powder. J. Am. Ceram. Soc. 78, 2534 (1995).

    Article  CAS  Google Scholar 

  102. S. Baik and P.F. Becher: Effect of oxygen contamination on densification of TiB2. J. Am. Ceram. Soc. 70, 527 (1987).

    Article  CAS  Google Scholar 

  103. A.L. Chamberlain, W.G. Fahrenholtz, and G.E. Hilmas: Pressureless sintering of zirconium diboride. J. Am. Ceram. Soc. 89, 450 (2006).

    Article  CAS  Google Scholar 

  104. S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, and S.C. Zhang: Pressureless sintering of carbon-coated zirconium diboride powders. Mater. Sci. Eng., A 459, 167 (2007).

    Article  CAS  Google Scholar 

  105. S.C. Zhang, G.E. Hilmas, and W.G. Fahrenholtz: Pressureless densification of zirconium diboride with boron carbide additions. J. Am. Ceram. Soc. 89, 1544 (2006).

    Article  CAS  Google Scholar 

  106. W.G. Fahrenholtz, G.E. Hilmas, S.C. Zhang, and S. Zhu: Pressureless sintering of zirconium diboride: Particle size and additive effects. J. Am. Ceram. Soc. 91, 1398 (2008).

    Article  CAS  Google Scholar 

  107. G. van de Goor, P. Sagesser, and K. Berroth: Electrically conductive ceramic composites. Solid State Ionics 101–103, 1163 (1997).

    Google Scholar 

  108. L.H. Li, H.E. Kim, and E.S. Kang: Sintering and mechanical properties of titanium diboride with aluminum nitride as a sintering aid. J. Eur. Ceram. Soc. 22, 973 (2002).

    Article  CAS  Google Scholar 

  109. F. Monteverde and A. Bellosi: Beneficial effect of AlN as sintering aid on microstructure and mechanical properties of hot-pressed ZrB2. Adv. Eng. Mater. 5 (7) 508–512 (2003).

    Article  CAS  Google Scholar 

  110. S. Zhu, W.G. Fahrenholtz, G.E. Hilmas, and S.C. Zhang: Pressureless sintering of zirconium diboride using boron carbide and carbon additions. J. Am. Ceram. Soc. 90, 3660 (2007).

    Article  CAS  Google Scholar 

  111. D. Sciti, L. Silvestroni, V. Medri, and F. Monteverde: Sintering and densification mechanisms of ultra-high temperature ceramics. In Ultra-High Temperature Ceramics: Materials for Extreme Environment Applications, W.G. Fahrenholtz, E.J. Wuchina, W.E. Lee, and Y. Zhou eds.; Wiley-Blackwell: New York, 2014; pp. 112–143.

    Google Scholar 

  112. W-M. Guo, Z-G. Yang, and G-J. Zhang: Synthesis of submicrometer HfB2 powder and its densification. Mater. Lett. 83, 52 (2012).

    Article  CAS  Google Scholar 

  113. X-G. Wang, W-M. Guo, and G-J. Zhang: Pressureless sintering mechanism and microstructure of ZrB2–SiC ceramics doped with boron. Scr. Mater. 61, 177 (2009).

    Article  CAS  Google Scholar 

  114. S. Ran, O. Van der Biest, and J. Vleugels: ZrB2 powders synthesis by borothermal reduction. J. Am. Ceram. Soc. 93, 1586 (2010).

    CAS  Google Scholar 

  115. J.K. Sonber, T.S.R.C. Murthy, C. Subramanian, S. Kumar, R.K. Fotedar, and A.K. Suri: Investigations on synthesis of ZrB2 and development of new composites with HfB2 and TiSi2. Int. J. Refract. Met. Hard Mater. 29, 21 (2011).

    Article  CAS  Google Scholar 

  116. G.J. Zhang, Z.Y. Deng, N. Kondo, J.F. Yang, and T. Ohji: Reactive hot pressing of ZrB2–SiC composites. J. Am. Ceram. Soc. 83, 2330 (2000).

    Article  CAS  Google Scholar 

  117. G.J. Zhang, M. Ando, J.F. Yang, T. Ohji, and S. Kanzaki: Boron carbide and nitride as reactants for in situ synthesis of boride-containing ceramic composites. J. Eur. Ceram. Soc. 24, 171 (2004).

    Article  CAS  Google Scholar 

  118. J. Zou, J. Liu, G-J. Zhang, S. Huang, J. Vleugels, O. Van der Biest, and J.Z. Shen: Hexagonal BN-encapsulated ZrB2 particle by nitride boronizing. Acta Mater. 72, 167 (2014).

    Article  CAS  Google Scholar 

  119. W.G. Fahrenholtz: Reactive processing in ceramic-based systems. Int. J. Appl. Ceram. Technol. 3, 1 (2006).

    Article  CAS  Google Scholar 

  120. Y.M. Chiang, J.S. Haggerty, R.P. Messner, and C. Demetry: Reaction-based processing methods for ceramic-matrix. Am. Ceram. Soc. Bull. 68, 420 (1989).

    CAS  Google Scholar 

  121. A.L. Chamberlain, W.G. Fahrenholtz, and G.E. Hilmas: Reactive processing of zirconium diboride. J. Eur. Ceram. Soc. 29, 3401 (2009).

    Article  CAS  Google Scholar 

  122. W-W. Wu, G-J. Zhang, and Y. Sakka: Nanocrystalline ZrB2 powders prepared by mechanical alloying. J. Asian Ceram. Soc. 1, 304 (2013).

    Article  Google Scholar 

  123. D. Lee, J.J. Vlassak, and K. Zhao: First-principles theoretical studies and nanocalorimetry experiments on solid-state alloying of Zr–B. Nano Lett. 15, 6553 (2015).

    Article  CAS  Google Scholar 

  124. A.L. Chamberlain, W.G. Fahrenholtz, and G.E. Hilmas: Low temperature densification of zirconium diboride ceramics by reactive hot pressing. J. Am. Ceram. Soc. 89, 3638 (2006).

    Article  CAS  Google Scholar 

  125. C. Hu, J. Zou, Q. Huang, G. Zhang, S. Guo, and Y. Sakka: Synthesis of plate-like ZrB2 grains. J. Am. Ceram. Soc. 95, 85 (2012).

    Article  CAS  Google Scholar 

  126. H.J. Jung, Y. Sohn, H.G. Sung, H.S. Hyun, and W.G. Shin: Physicochemical properties of ball milled boron particles: Dry versus wet ball milling process. Powder Technol. 269, 548 (2015).

    Article  CAS  Google Scholar 

  127. W.G. Fahrenholtz: Reactive hot pressing of Al2O3–Ni composites. J. Mater. Sci. 38, 3073 (2003).

    Article  CAS  Google Scholar 

  128. S. Guo, C. Hu, and Y. Kagawa: Mechanochemical processing of nanocrystalline zirconium diboride powder. J. Am. Ceram. Soc. 94, 3643 (2011).

    Article  CAS  Google Scholar 

  129. S. Ran, O. Van der Biest, and J. Vleugels: ZrB2–SiC composites prepared by reactive pulsed electric current sintering. J. Euro. Ceram. Soc. 30, 2633 (2010).

    Article  CAS  Google Scholar 

  130. S. Guo, D.H. Ping, and Y. Kagawa: Synthesis of zirconium diboride platelets from mechanically activated ZrCl4 and B powder mixture. Ceram. Int. 38, 5195 (2012).

    Article  CAS  Google Scholar 

  131. I. Parkin: Solid state metathesis reaction for metal borides, silicides, pnictides and chalcogenides: Ionic or elemental pathways. Chem. Soc. Rev. 25, 199 (1996).

    Article  CAS  Google Scholar 

  132. L. Rao, E.G. Gillan, and R.B. Kanera: Rapid synthesis of transition-metal borides by solid-state metathesis. J. Mater. Res. 10, 353 (1995).

    Article  CAS  Google Scholar 

  133. E.G. Gillan and R.B. Kaner: Synthesis of refractory ceramics via rapid metathesis reactions between solid-state precursors. Chem. Mater. 8, 333 (1996).

    Article  CAS  Google Scholar 

  134. R. Licheri, R. Orrù, C.A. Musa, and G. Cao: Combination of SHS and SPS techniques for fabrication of fully dense ZrB2–ZrC–SiC composites. Mater. Lett. 62, 432 (2008).

    Article  CAS  Google Scholar 

  135. W-W. Wu, Z. Wang, G-J. Zhang, Y-M. Kan, and P-L. Wang: ZrB2 MoSi2 composites toughened by elongated ZrB2 grains via reactive hot pressing. Scr. Mater. 61, 316 (2009).

    Article  CAS  Google Scholar 

  136. H-T. Liu, W-W. Wu, J. Zou, D-W. Ni, Y-M. Kan, and G-J. Zhang: In situ synthesis of ZrB2–MoSi2 platelet composites: Reactive hot pressing process, microstructure and mechanical properties. Ceram. Int. 38, 4751 (2012).

    Article  CAS  Google Scholar 

  137. H.L. Zhao, J.L. Wang, Z.M. Zhu, J. Wang, and W. Pan: Mechanical properties and microstructure of in situ synthesized ZrB2–ZrN1−x composites. J. Mater. Sci. 41, 1769 (2006).

    Article  CAS  Google Scholar 

  138. H. Zhao, J. Wang, Z. Zhu, W. Pan, and J. Wang: In situ synthesis mechanism of ZrB2–ZrN composite. Mater. Sci. Eng., A 452–453, 130 (2007).

    Article  CAS  Google Scholar 

  139. W-W. Wu, M. Estili, T. Nishimura, G-J. Zhang, and Y. Sakka: Machinable ZrB2–SiC–BN composites fabricated by reactive spark plasma sintering. Mater. Sci. Eng., A 582, 41 (2013).

    Article  CAS  Google Scholar 

  140. E. Breval and W.B. Johnson: Microstructure of platelet-reinforced ceramics prepared by the directed reaction of zirconium with boron carbide. J. Am. Ceram. Soc. 75, 2139 (1992).

    Article  CAS  Google Scholar 

  141. W-W. Wu, G-J. Zhang, Y.M. Kan, and Y. Sakka: Synthesis, microstructure and mechanical properties of reactively sintered ZrB2–SiC–ZrN composites. Ceram. Int. 39, 7273 (2013).

    Article  CAS  Google Scholar 

  142. Q. Qu, J. Han, W. Han, X. Zhang, and C. Hong: In situ synthesis mechanism and characterization of ZrB2–ZrC–SiC ultra high-temperature ceramics. Mater. Chem. Phys. 110, 216 (2008).

    Article  CAS  Google Scholar 

  143. J.W. Zimmermann, G.E. Hilmas, W.G. Fahrenholtz, F. Monteverde, and A. Bellosi: Fabrication and properties of reactively hot pressed ZrB2–SiC ceramics. J. Eur. Ceram. Soc. 27, 2729 (2007).

    Article  CAS  Google Scholar 

  144. L. Rangaraj, C. Divakar, and V. Jayaram: Fabrication and mechanisms of densification of ZrB2-based ultra-high temperature ceramics by reactive hot pressing. J. Eur. Ceram. Soc. 30, 129 (2010).

    Article  CAS  Google Scholar 

  145. Y. Zhao, L-J. Wang, G-J. Zhang, W. Jiang, and L-D. Chen: Preparation and microstructure of a ZrB2–SiC composite fabricated by the spark plasma sintering-reactive synthesis method. J. Am. Ceram. Soc. 90, 4040 (2007).

    CAS  Google Scholar 

  146. W.W. Wu, G.J. Zhang, Y.M. Kan, and P.L. Wang: Reactive hot pressing of ZrB2–SiC–ZrC ultra high-temperature ceramics at 1800 °C. J. Am. Ceram. Soc. 89, 2967 (2006).

    CAS  Google Scholar 

  147. F. Monteverde: Progress in the fabrication of ultra-high-temperature ceramics: In situ synthesis, microstructure and properties of a reactive hot pressed HfB2-SIC. Compos. Sci. Technol. 65, 1869 (2005).

    Article  CAS  Google Scholar 

  148. W.W. Wu, G-J. Zhang, Y.M. Kan, and P-L. Wang: Reactive hot pressing of ZrB2–SiC–ZrC composites at 1600 °C. J. Am. Ceram. Soc. 91, 2501 (2000).

    Article  CAS  Google Scholar 

  149. W-W. Wu, G-J. Zhang, Y-M. Kan, and P-L. Wang: Combustion synthesis of ZrB2–SiC composite powders ignited in air. Mater. Lett. 63, 1422 (2009).

    Article  CAS  Google Scholar 

  150. T. Tsuchida and S. Yamamoto: Mechanical activation assisted self-propagating high-temperature synthesis of ZrC and ZrB2 in air from Zr/B/C powder mixtures. J. Eur. Ceram. Soc. 24, 45 (2004).

    Article  CAS  Google Scholar 

  151. T. Tsuchida and S. Yamamoto: MA-SHS and SPS of ZrB2–ZrC composites. Solid State Ionics 172, 215 (2004).

    Article  CAS  Google Scholar 

  152. W-W. Wu, W-L. Xiao, M. Estili, G-J. Zhang, and Y. Sakka: Microstructure and mechanical properties of ZrB2–SiC–BN composites fabricated by reactive hot pressing and reactive spark plasma sintering. Scr. Mater. 68, 889 (2013).

    Article  CAS  Google Scholar 

  153. J. Zou, S.G. Huang, K. Vanmeensel, G.J. Zhang, J. Vleugels, and O. Van der Biest: Spark plasma sintering of superhard B4C–ZrB2 ceramics by carbide boronizing. J. Am. Ceram. Soc. 96, 1055 (2013).

    Article  CAS  Google Scholar 

  154. J. Zou, J. Liu, J. Zhao, G-J. Zhang, S. Huang, B. Qian, J. Vleugels, O. Van der Biest, and J.Z. Shen: A top-down approach to densify ZrB2–SiC–BN composites with deeper homogeneity and improved reliability. Chem. Eng. J. 249, 93 (2014).

    Article  CAS  Google Scholar 

  155. D. Wang, S. Ran, L. Shen, H. Sun, and Q. Huang: Fast synthesis of B4C–TiB2 composite powders by pulsed electric current heating TiC–B mixture. J. Eur. Ceram. Soc. 35, 1107 (2015).

    Article  CAS  Google Scholar 

  156. D. Vallauri, I.C. Atías Adrian, and A. Chrysanthou: TiC–TiB2 composites: A review of phase relationships, processing and properties. J. Eur. Ceram. Soc. 28, 1697 (2008).

    Article  CAS  Google Scholar 

  157. N.J. Welham: Formation of nanometric TiB2 from TiO2. J. Am. Ceram. Soc. 83, 1290 (2000).

    Article  CAS  Google Scholar 

  158. N. Setoudeh and N.J. Welham: Formation of zirconium diboride by room temperature mechanochemical reaction between ZrO2, B2O3 and Mg. J. Alloys Compd. 420, 225 (2006).

    Article  CAS  Google Scholar 

  159. R. Ricceri and P. Matteazzi: A fast and low-cost room temperature process for TiB2 formation by mechanosynthesis. Mater. Sci. Eng., A 379, 341 (2004).

    Article  CAS  Google Scholar 

  160. D.L. Segal: Chemical routes for the preparation of powders. Phys. Chem. Carbides, Nitrides Borides 185, 3 (1990).

    Article  CAS  Google Scholar 

  161. Y.D. Blum and H-J. Kleebe: Chemical reactivities of hafnium and its derived boride, carbide and nitride compounds at relatively mild temperature. J. Mater. Sci. 39, 6023 (2004).

    Article  CAS  Google Scholar 

  162. H.R. Hoekstra and J.J. Katz: The preparation and properties of the group IV-B metal borohydrides. J. Am. Chem. Soc. 71, 2488 (1949).

    Article  CAS  Google Scholar 

  163. W.E. Reid, J.M. Bish, and A. Brenner: Electrodeposition of metals from organic solutions. III. Preparation and electrolysis of titanium and zirconium compounds in non-aqueous media. J. Electrochem. Soc. 104, 21 (1957).

    Article  CAS  Google Scholar 

  164. M.K. Gallagher, W.E. Rhine, and H.K. Bowen: Low-temperature route to high-purity titanium, zirconium and hafnium diboride powders and films. In Ultrastructure Processing of Advanced Ceramics, J.D. Mackenzie and D.R. Ulrich eds.; Wiley Interscience: New York, 1988; pp. 901–906.

    Google Scholar 

  165. L. Chen, Y. Gu, Z. Yang, and Y. Qian: Preparation and some properties of nanocrystalline ZrB2 powder. Scr. Mater. 50, 959 (2004).

    Article  CAS  Google Scholar 

  166. L. Chen, Y. Gu, L. Shi, Z. Yang, J. Ma, and Y. Qian: Synthesis and oxidation of nanocrystalline HfB2. J. Alloys Compd. 368, 353 (2004).

    Article  CAS  Google Scholar 

  167. Y. Yan, Z. Huang, S. Dong, and D. Jiang: New route to synthesize ultra-fine zirconium diboride powders using inorganic–organic hybrid precursors. J. Am. Ceram. Soc. 89, 3585 (2006).

    Article  CAS  Google Scholar 

  168. Y.J. Yan, Z.R. Huang, S.M. Dong, and D.L. Jiang: Carbothermal preparation of ultra-fine TiB2 powders using solution-derived precursors via sol-gel method. Key Eng. Mater. 336–338, 944 (2007).

    Article  Google Scholar 

  169. S. Venugopal, A. Paul, B. Vaidhyanathan, J.G.P. Binner, E.E. Boakye, K. Keller, P. Mogilevsky, A. Katz, and P.M. Brown: Sol–gel synthesis and formation mechanism of ultra-high temperature ceramic: HfB2. J. Am. Ceram. Soc. 97, 92 (2014).

    Article  CAS  Google Scholar 

  170. S. Venugopal, D.D. Jayaseelan, A. Paul, B. Vaidhyanathan, J.G.P. Binner, and P.M. Brown: Screw dislocation assisted spontaneous growth of HfB2 tubes and rods. J. Am. Ceram. Soc. 98, 2060 (2015).

    Article  CAS  Google Scholar 

  171. S. Venugopal, A. Paul, B. Vaidhyanathan, J.G.P. Binner, A. Heaton, and P.M. Brown: Synthesis and spark plasma sintering of sub-micron HfB2: Effect of various carbon sources. J. Eur. Ceram. Soc. 34, 1471 (2014).

    Article  CAS  Google Scholar 

  172. Y. Cao, H. Zhang, F. Li, L. Lu, and S. Zhang: Preparation and characterization of ultrafine ZrB2–SiC composite powders by a combined sol–gel and microwave boro/carbothermal reduction method. Ceram. Int. 41, 7823 (2015).

    Article  CAS  Google Scholar 

  173. Y. Xie, T.H. Sanders, and R.F. Speyer: Solution-based synthesis of submicrometer ZrB2 and ZrB2–TaB2. J. Am. Ceram. Soc. 91, 1469 (2008).

    Article  CAS  Google Scholar 

  174. D.L. Hu, Q. Zheng, H. Gu, D.W. Ni, and G.J. Zhang: Role of WC additive on reaction, solid-solution and densification in HfB2–SiC ceramics. J. Eur. Ceram. Soc. 34, 611 (2014).

    Article  CAS  Google Scholar 

  175. X.H. Zhang, P. Hu, J.C. Han, L. Xu, and S.H. Meng: The addition of lanthanum hexaboride to zirconium diboride for improved oxidation resistance. Scr. Mater. 57, 1036 (2007).

    Article  CAS  Google Scholar 

  176. S.R. Levine and E.J. Opila: Tantalum addition to zirconium diboride for improved oxidation resistance. Nasa/TM-2003-212483 (2003).

  177. F. Monteverde: Ultra-high temperature HfB2–SiC ceramics consolidated by hot-pressing and spark plasma sintering. J. Alloys Compd. 428, 197 (2007).

    Article  CAS  Google Scholar 

  178. Y. Wang, L. Luo, J. Sun, and L. An: ZrB2–SiC(Al) ceramics with high resistance to oxidation at 1500 °C. Corros. Sci. 74, 154 (2013).

    Article  CAS  Google Scholar 

  179. J. Han, P. Hu, X. Zhang, S. Meng, and W. Han: Oxidation-resistant ZrB2–SiC composites at 2200 °C. Compos. Sci. Technol. 68, 799 (2008).

    Article  CAS  Google Scholar 

  180. P.A. Williams, R. Sakidja, J.H. Perepezko, and P. Ritt: Oxidation of ZrB2–SiC ultra-high temperature composites over a wide range of SiC content. J. Eur. Ceram. Soc. 32, 3875 (2012).

    Article  CAS  Google Scholar 

  181. W.G. Fahrenholtz and G.E. Hilmas: Oxidation of ultra-high temperature transition metal diboride ceramics. Int. Mater. Rev. 57, 61 (2012).

    Article  CAS  Google Scholar 

  182. D-W. Ni, G-J. Zhang, Y-M. Kan, and P-L. Wang: Synthesis of monodispersed fine hafnium diboride powders using carbo/borothermal reduction of hafnium dioxide. J. Am. Ceram. Soc. 91, 2709 (2008).

    Article  CAS  Google Scholar 

  183. E. Opila and M. Halbig: Oxidation of ZrB2–SiC. Cer. Eng. Sci. Proc. 22, 221 (2008).

    Article  Google Scholar 

  184. B. Zhao, Y. Zhang, J. Li, B. Yang, T. Wang, Y. Hu, D. Sun, R. Li, S. Yin, Z. Feng, and T. Sato: Morphology and mechanism study for the synthesis of ZrB2–SiC powders by different methods. J. Solid State Chem. 207, 1 (2013).

    Article  CAS  Google Scholar 

  185. M.A. Avilés, J.M. Córdoba, M.J. Sayagués, M.D. Alcalá, and F.J. Gotor: Mechanosynthesis of Hf1−xZrxB2 solid solution and Hf1−xZrxB2/SiC composite powders. J. Am. Ceram. Soc. 93, 696 (2010).

    Article  CAS  Google Scholar 

  186. D.L. McClane, W.G. Fahrenholtz, and G.E. Hilmas: Thermal properties of (Zr, TM)B2 solid solutions with TM = Ta, Mo, Re, V and Cr. J. Am. Ceram. Soc. 98, 637 (2015).

    Article  CAS  Google Scholar 

  187. D.L. McClane, W.G. Fahrenholtz, and G.E. Hilmas: Thermal properties of (Zr, TM)B2 solid solutions with TM = Hf, Nb, W, Ti and Y. J. Am. Ceram. Soc. 97, 1552 (2014).

    Article  CAS  Google Scholar 

  188. B. Post, F.W. Glaser, and D. Moskowitz: Transition metal diborides. Acta Metall. 2, 20 (1954).

    Article  CAS  Google Scholar 

  189. S. Otani, T. Aizawa, and N. Kieda: Solid solution ranges of zirconium diboride with other refractory diborides: HfB2, TiB2, TaB2, NbB2, VB2 and CrB2. J. Alloys Compd. 475, 273 (2009).

    Article  CAS  Google Scholar 

  190. W.G. Fahrenholtz, G.E. Hilmas, I.G. Talmy, and J.A. Zaykoski: Refractory diborides of zirconium and hafnium. J. Am. Ceram. Soc. 90, 1347 (2007).

    Article  CAS  Google Scholar 

  191. Y. Jiang, R. Li, Y. Zhang, B. Zhao, J. Li, and Z. Feng: Tungsten doped ZrB2 powder synthesized synergistically by co-precipitation and solid-state reaction methods. Procedia Eng. 27, 1679 (2012).

    Article  CAS  Google Scholar 

  192. I.G. Talmy, J.A. Zaykoski, and M.M. Opeka: High-temperature chemistry and oxidation of ZrB2 ceramics containing SiC, Si3N4, Ta5Si3 and TaSi2. J. Am. Ceram. Soc. 91, 2250 (2008).

    Article  CAS  Google Scholar 

  193. D. Sciti, V. Medri, and L. Silvestroni: Oxidation behaviour of HfB2–15 vol% TaSi2 at low, intermediate and high temperatures. Scr. Mater. 63, 601 (2010).

    Article  CAS  Google Scholar 

  194. S.C. Zhang, G.E. Hilmas, and W.G. Fahrenholtz: Improved oxidation resistance of zirconium diboride by tungsten carbide additions. J. Am. Ceram. Soc. 91, 3530 (2008).

    Article  CAS  Google Scholar 

  195. S.C. Zhang, G.E. Hilmas, and W.G. Fahrenholtz: Oxidation of zirconium diboride with tungsten carbide additions. J. Am. Ceram. Soc. 94, 1198 (2011).

    Article  CAS  Google Scholar 

  196. R. He, X. Zhang, W. Han, P. Hu, and C. Hong: Effects of solids loading on microstructure and mechanical properties of HfB2–20 vol% MoSi2 ultra high temperature ceramic composites through aqueous gelcasting route. Mater. Des. 47, 35 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This manuscript was conceived and drafted as part of an extended visit by WGF to the University of Birmingham during the spring of 2015. The authors wish to thank the U.K. Engineering and Physical Science Research Council (EPSRC) for financial support through the Materials Systems for Extreme Environments (XMAT) program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William G. Fahrenholtz.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr-editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fahrenholtz, W.G., Binner, J. & Zou, J. Synthesis of ultra-refractory transition metal diboride compounds. Journal of Materials Research 31, 2757–2772 (2016). https://doi.org/10.1557/jmr.2016.210

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2016.210

Navigation