Skip to main content
Log in

Challenges to the use of ion irradiation for emulating reactor irradiation

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Development of new materials for current and advanced reactor concepts is hampered by long lead times and high cost of reactor irradiations coupled with the paucity of test reactors. Ion irradiation offers many advantages for emulating the microstructures and properties of materials irradiated in reactors but also poses many challenges. Nevertheless, there is a growing body of evidence, primarily for light ion (proton) irradiation showing that many, if not all of the features of the irradiated microstructure and properties, can be successfully emulated by careful selection of irradiation parameters based on differences in the damage processes between ion and neutron irradiation. While much less has been done to benchmark heavy- or self-ion irradiation, recent work shows that under certain conditions, the complete suite of features of the irradiated microstructure can be emulated. This study summarizes the contributions of ion irradiation to our understanding of irradiation effects, the options for emulating radiation effects in reactors, and experience with both proton irradiation and heavy ion irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19
FIG. 20
FIG. 21
FIG. 22
FIG. 23
FIG. 24
FIG. 25
FIG. 26
FIG. 27
FIG. 28

Similar content being viewed by others

References

  1. Y. Guerin, G.S. Was, and S.J. Zinkle: Materials challenges for advanced nuclear energy systems. MRS Bulletin 34(1), 10 (2009).

    CAS  Google Scholar 

  2. E.H. Lee, P.J. Maziasz, and A.F. Rowcliffe: The structure and composition of phases occurring in austenitic stainless steels in thermal and irradiation environments. In Phase Stability During Irradiation, J.R. Holland, L.K. Mansur, and D.I. Potter eds.; The Metallurgical Society of AIME: New York, 1981; p. 191.

    Google Scholar 

  3. P.R. Okamoto and L.E. Rehn: Radiation induced segregation in binary and ternary alloys. J. Nucl. Mater. 83(1), 2 (1979).

    Article  CAS  Google Scholar 

  4. R.S. Nelson, J.A. Hudson, and D.J. Mazey: The stability of precipitates in an irradiation environment. J. Nucl. Mater. 44(3), 318 (1972).

    Article  CAS  Google Scholar 

  5. R.M. Boothby: The microstructure of fast neutron irradiated Nimonic PE16. J. Nucl. Mater. 230(2), 148 (1996).

    Article  CAS  Google Scholar 

  6. P.S. Sklad, R.E. Clausing, and E.E. Bloom: Effects of neutron irradiation on microstructure and mechanical properties of nimonic PE-16. In Irradiation Effects on the Microstructure and Properties of Metals, F.R. Shober ed.; American Society for Testing and Materials: Philadelphia, PA, 1976; p. 139.

    Chapter  Google Scholar 

  7. A.D. Marwick: Solute segregation and precipitate stability in irraiated alloys. Nucl. Instrum. Methods 182–183, 827 (1981).

    Article  Google Scholar 

  8. A.F. Rowcliffe, L.K. Mansur, D.T. Hoelzer, and R.K. Nanstad: Perspectives on radaition effects in nickel-base alloys for applications in advanced reactors. J. Nucl. Mater. 392(2), 341 (2009).

    Article  CAS  Google Scholar 

  9. G.S. Was and R.S. Averback: Radiation damage using ion beams. In Comprehensive Nuclear Materials, Vol. 1, R.J.M. Konings ed.; Elsevier: Amsterdam, 2012; p. 195.

    Chapter  Google Scholar 

  10. P. Jung, R.L. Chaplin, H.J. Fenzl, K. Reichelt, and P. Wombacher: Anisotropy of the threshold energy for production of frenkel pairs in copper and platinum. Phys. Rev. B 8, 553 (1973).

    Article  CAS  Google Scholar 

  11. P. Vajda: Anisotropy of electron radiation damage in metal crystals. Rev. Mod. Phys. 49, 481 (1977).

    Article  CAS  Google Scholar 

  12. W.E. King, K.L. Merkle, and M. Meshii: Determination of the threshold surface for copper using in situ electrical resistivity measurements in the high voltage electron microscope. Phys. Rev. B 23, 6319 (1981).

    Article  CAS  Google Scholar 

  13. J.B. Gibson, A.N. Goland, M. Milgram, and G.H. Vineyard: Dynamics of radiation damage. Phys. Rev. 120, 1229 (1960).

    Article  CAS  Google Scholar 

  14. P. Lucasson: The production of Frenkel defects. In Fundamental Aspects of Radiation Damage in Metals, M.T. Robinson and F.W. Young Jr. eds.; ERDA Report CONF-751006, 1975; p. 42.

  15. J.W. Corbett, R.B. Smith, and R.M. Walker: Recovery of electron-irradiated copper. I. Close pair recovery. Phys. Rev. 114, 1452 (1959).

    Article  CAS  Google Scholar 

  16. G. Burger, K. Isebeck, J. Volkl, W. Schilling, and H. Wenzl: Low-temperature recovery spectra of neuron-irradiated metals. Z. Angew. Phys. 36, 3356 (1965).

    CAS  Google Scholar 

  17. K.R. Garr and A. Sosin: Recovery of electron-irradiated aluminum and aluminum alloys. II. Stage II. Phys. Rev. 162, 669 (1967).

    Article  CAS  Google Scholar 

  18. P. Ehrhart: Introduction for atomic defects and diffusion, atomic defects in metals. In Landolt-Bornstein New Series, Group III, Vol. 25, H. Ullmaier ed.; Springer: Berlin, 1991; p. 115.

    Google Scholar 

  19. R.S. Averback and T.D. de la Rubia: Displacement damage in irradiated metals and semiconductors. Solid State Phys. 51, 281 (1997).

    Article  Google Scholar 

  20. L.E. Rehn, P.R. Okamoto, and R.S. Averback: Relative efficiencies of different ions for producing freely migrating defects. Phys. Rev. B 30, 3073 (1984).

    Article  CAS  Google Scholar 

  21. L.C. Wei, E. Lang, C.P. Flynn, and R.S. Averback: Freely migrating defects in ion-irradiated Cu3Au. Appl. Phys. Lett. 75, 805 (1999).

    Article  CAS  Google Scholar 

  22. P. Fielitz, M-P. Macht, V. Naundorf, and H. Wollenberger: Atom transport under ion irradiation. J. Nucl. Mater. 251, 123 (1997).

    Article  CAS  Google Scholar 

  23. P.R. Okamoto, S.D. Harkness, and J.J. Laidler: Solute segregation to voids during electron irradiation. ANS Trans. 16, 70 (1973).

    Google Scholar 

  24. P.R. Okamoto and H. Wiedersich: Segregation of alloying elements to free surfaces during irradiation. J. Nucl. Mater. 53, 336 (1974).

    Article  CAS  Google Scholar 

  25. L.E. Rehn: Surface modification and radiation-induced segregation. In Metastable Materials Formation by Ion Implantation, S.T. Picraux and W.J. Choyke eds.; Elsevier Science: New York, 1982; p. 17.

    Google Scholar 

  26. G. Schmitz, J.C. Ewert, F. Harbsmeier, M. Uhrmacher, and F. Haider: Phase stability of decomposed Ni-Al alloys under irradaition. Phys. Rev. B. 63, 224113 (2001).

    Article  CAS  Google Scholar 

  27. R.A. Enrique, K. Nordland, R.S. Averback, and P. Bellon: Simulation of dynamical stabilization of Ag-Cu nanocomposites by ion beam processing. J Appl. Phys. 93, 2917 (2003).

    Article  CAS  Google Scholar 

  28. R.A. Enrique and P. Bellon: Compositional patterning in systems driven by competing dynamics of different length scale. Phys. Rev. Lett. 84, 2885 (2000).

    Article  CAS  Google Scholar 

  29. R.S. Averback: Atomic displacement processes in irradiated metals. J. Nucl. Mater. 216, 49 (1994).

    Article  CAS  Google Scholar 

  30. A. Souidi, M. Hou, C.S. Becquart, L. Malerba, C. Domain, and R.E. Stoller: On the correlation between primary damage and long-term nanostructural evolution in iron under irradiation. J. Nucl. Mater. 419, 122 (2011).

    Article  CAS  Google Scholar 

  31. F.A. Garner, R.W. Powell, D.W. Keefer, A.G. Pard, K.R. Garr, M.M. Nakata, T. Lauritzen, W.L. Bell, W.G. Johnston, W.K. Appleby, S. Diamond, M. Baron, R. Chickering, R. Bajaj, M.L. Bleiberg, J.A. Sprague, F.A. Smidt, and J.E. Westmoreland: Summary report on the alloy development intercorrelation program experiment. In Proceedings of the Workshop of Neutron and Charged Particle Damage, CONF-760673, Oak Ridge National Laboratory: Oak Ridge, TN, 1976; p. 147.

    Google Scholar 

  32. L.K. Mansur: Void swelling in metals and alloys under irradiation: An assessment of the theory. Nucl. Technol. 40, 5 (1978).

    Article  CAS  Google Scholar 

  33. L.K. Mansur: Correlation of neutron and heavy-ion damage: II. The predicted temperature shift with swelling changes in radiation dose rate. J. Nucl. Mater. 78156 (1978).

    Article  CAS  Google Scholar 

  34. L.K. Mansur: Theory of transitions in dose dependence of radiation effects in structural alloys. J. Nucl. Mater. 206306 (1993).

    Article  CAS  Google Scholar 

  35. T. Ezawa and E. Wakai: Radiation-induced solute segregation in Al and Ni binary alloys under HVEM irradiation. Ultramicroscopy 39, 187 (1991).

    Article  CAS  Google Scholar 

  36. J.A. Ashworth, D.I.R. Norris, and I.P. Jones: Radiation-induced segregation in Fe-20Cr-25Ni-Nb based austenitic stainless steels. J. Nucl. Mater. 189, 289 (1992).

    Article  CAS  Google Scholar 

  37. E. Wakai: Radiation-induced segregation in Ni alloys by deuterium ion irradiations. Materials Trans. JIM 33(10), 884 (1992).

    Article  CAS  Google Scholar 

  38. J.B. Whitley: Thesis for Doctor of Philosophy — Nuclear Engineering, University of Wisconsin-Madison, 1978.

    Google Scholar 

  39. F.A. Garner: Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage. J. Nucl. Mater. 117, 177 (1983).

    Article  CAS  Google Scholar 

  40. E.H. Lee, L.K. Mansur, and M.H. Yoo: Spatial variation in void volume during charged particle bombardment—The effects of injected interstitials. J. Nucl. Mater. 85–86, 577 (1979).

    Article  Google Scholar 

  41. A.D. Brailsford and L.K. Mansur: Effect of self-ion injection in simulation studies of void swelling. J. Nucl. Mater. 71, 110 (1977).

    Article  CAS  Google Scholar 

  42. G.S. Was and T.R. Allen: Radiation damage from different particle types. In Radiation Effects in Solids, in NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 235, K.E. Sickafus, E.A. Kotomin, and B.P. Uberuaga eds.; Springer: Berlin, 2007; p. 65.

    Chapter  Google Scholar 

  43. J. Gan and G.S. Was: Microstructure evolution in austenitic Fe-Cr-Ni alloys irradiated with Protons: Comparison with neutron-irradiated microstructures. J. Nucl. Mater. 297, 161 (2001).

    Article  CAS  Google Scholar 

  44. S.M. Bruemmer, D. Edwards, and E. Simonen: Characterization on Neutron-Irradiated 300 Series Stainless Steels to Assess Mechanisms of Irradiation-Assisted Stress Corrosion Cracking; EPRI Report 101496; Electric Power Research Institute: Palo Alto, CA, 2001.

    Google Scholar 

  45. S.J. Zinkle, P.J. Maziasz, and R.E. Stoller: Dose dependence of the microstructural evolution in neutron-irradiated austenitic steel. J. Nucl. Mater. 206, 266 (1993).

    Article  CAS  Google Scholar 

  46. G.R. Odette and G.E. Lucas: The effects of intermediated temperature irradiation on the mechanical behavior of 300-series austenitic stainless steels. J. Nucl. Mater. 179, 572 (1991).

    Article  Google Scholar 

  47. P. Maziasz: Effects of Helium Content on Microstructural Development in Type 316 Stainless Steel Under Neutron Irradiation; Oak Ridge National Laboratory Report, ORNL-6121; Oak Ridge, TN, 1985.

  48. L.R. Greenwood: Fusion Reactor Materials Semiannual Progress Report for Period ending March 31, 1989, Office of Fusion Energy; DOE/ER-0313/6; 1989; p. 23.

  49. J. Gan, G.S. Was, and R.E. Stoller: Modeling of microstructure evolution in austenitic stainless steels irradiated under light water reactor conditions. J. Nucl. Mater. 299, 53 (2001).

    Article  CAS  Google Scholar 

  50. B.H. Sencer, G.S. Was, M. Sagisaka, Y. Isobe, G.M. Bond, and F.A. Garner: Proton irradiation emulation of microstructural evolution of solution annealed 304 and cold-worked 316 stainless steels during irradiation in PWRs. J. Nucl. Mater. 323, 18 (2003).

    Article  CAS  Google Scholar 

  51. F.A. Garner: Chapter 6: Irradiation performance of cladding and structural steels in liquid metal reactors. In Materials Science and Technology: A Comprehensive Treatment, Vol. 10A, B.R.T. Frost ed.; VCH: New York, 1994; p. 419.

    Google Scholar 

  52. K. Fujii, K. Fukuya, G. Furutani, T. Torimaru, A. Kohyama, and Y. Kotah: Swelling in 316 stainless steels irradiated to 53 dpa in a PWR. In Proceedings of the Tenth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, F.P. Ford, G.S. Was, and J.L. Nelson eds.; NACE International: Houston, TX, 2000.

    Google Scholar 

  53. D.J. Edwards, E.P. Simonen, and S.M. Bruemmer: Evolution of fine-scale defects in stainless steels neutron-irradiated at 275°C. J. Nucl. Mater. 317, 13 (2003).

    Article  CAS  Google Scholar 

  54. L. Tournadre, F. Onimus, J-L. Bechade, D. Gibon, J-M. Cloue, J-P. Mardon, X. Feaugas, O. Toader, and C. Bachelet: Experimental study of the nucleation and growth of c-component loops under charged particle irradiations of recrystallized Zircaloy-4. J. Nucl. Mater. 425, 76 (2012).

    Article  CAS  Google Scholar 

  55. L. Tournadre, F. Onimus, J-L. Bechade, D. Gibon, J-M. Cloue, J-P. Mardon, and X. Feaugas: Toward a better understanding of the hydrogen impact on the radiation induced growth of zirconium alloys. J. Nucl. Mater. 441, 222 (2013).

    Article  CAS  Google Scholar 

  56. M. Griffiths: Microstructure evolution in Zr alloys during irradiation: Dose, dose rate, and impurity dependence. In Zirconium in the Nuclear Industry: Fifteenth international Symposium STP 1505, K. Bruce, L. Magnus, eds. American Society for Testing and Materials: Philadelphia, PA, 2009; p. 19.

    Chapter  Google Scholar 

  57. Y. De Carlan, D. Gilbon, M. Griffiths, C. Lemaignan, and C. Regnard: Influence of iron in the nucleation of <c> component dislocation loops in irradiated Zircaloy-4. In Zirconium in the Nuclear Industry: Eleventh International Symposium, STP 1295, E.R. Bradley, G.P. Sabol, eds. American Society for Testing and Materials: Philadelphia, PA, 1996; p. 638.

    Chapter  Google Scholar 

  58. M. Griffiths and R.W. Gilbert: The formation of c-component defects in zirconium alloys during neutron irradiation. J. Nucl. Mater. 150(2), 169 (1987).

    Article  CAS  Google Scholar 

  59. M. Griffiths, R.W. Gilbert, V. Fidleris, R.P. Tucker, and R.B. Adamson: Neutron damage in zirconium alloys irradiated at 644 to 710K. J. Nucl. Mater. 150(2), 159 (1987).

    Article  CAS  Google Scholar 

  60. T. Fukuda, T. Aoki, Y. Isobe, A. Hasegawa, and K. Abe: Microchemical and microstructural changes of austenitic steels caused by proton irradiation following helium implantation. J. Nucl. Mater. 258–263, 1694 (1998).

    Article  Google Scholar 

  61. G.S. Was and T. Allen: Radiation induced segregation in multicomponent alloys: Effect of particle type. Mater. Charact. 32(4), 239 (1994).

    Article  CAS  Google Scholar 

  62. K. Asano, K. Fukuya, K. Nakata, and M. Kodama: Changes in grain boundary composition induced by neutron irradiation on austenitic stainless steels. In Proceedings of the Fifth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, D. Cubicciotti, E.P. Simonen, and R. Gold eds.; American Nuclear Society, La Grange Park, IL, 1992; p. 838.

    Google Scholar 

  63. G.S. Was, J.T. Busby, J. Gan, E.A. Kenik, A. Jenssen, S.M. Bruemmer, P.M. Scott, and P.L. Andresen: Emulation of neutron irradiation effects with protons: Validation of principle. J. Nucl. Mater. 300, 198 (2002).

    Article  CAS  Google Scholar 

  64. P. Scott, Materials Reliability Program: A Review of the Cooperative Irradiation Assisted Stress Corrosion Cracking Research Program (MRP-98); 1002807; EPRI, Palo Alto, CA, 2003.

    Google Scholar 

  65. K.J. Stephenson and G.S. Was: Comparison of the microstructure, deformation and crack initiation behavior of austenitic stainless steel irradiated in-reactor or with protons. J. Nucl. Mater. 456, 85–98 (2015).

    Article  CAS  Google Scholar 

  66. J.T. Busby and G.S. Was, The Use of Proton Irradiation to Determine IASCC Mechanisms in Light Water Reactors: Phase 2: Commercial Alloys; 1009898; EPRI, Palo Alto, CA, 2005.

    Google Scholar 

  67. J.T. Busby and G.S. Was: The Use of Proton Irradiation to Determine IASCC Mechanisms in Light Water Reactors: Solute Addition Alloys; 1007440; EPRI, Palo Alto, CA, 2003.

    Google Scholar 

  68. D.J. Edwards, A. Schemer-Kohrn, and S. Bruemmer: Characterization of Neutron-Irradiated 300-Series Stainless Steels; EPRI Report 1009896; Electric Power Research Institute: Palo Alto, CA, 2006.

    Google Scholar 

  69. D.J. Edwards: Personal communication, 2012.

  70. Z. Jiao, G.S. Was, and J.T. Busby: The role of localized deformation on IASCC of proton-irradiated austenitic stainless steel. In 13th International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, T.R. Allen, J.T. Busby, and P.J. King eds.; CANS: Whistler, British Columbia, 2007; p. 1.

    Google Scholar 

  71. C.D. Cann, C.B. So, R.C. Styles, and C.E. Coleman: Precipitation in Zr-2.5Nb enhanced by proton irradiation. J. Nucl. Mater. 205, 267 (1993).

    Article  CAS  Google Scholar 

  72. V.F. Urbanic and R.W. Gilbert: Effect of microstructure on the corrosion of Zr-2.5%Nb alloys. In Proceedings of the On fundamental Aspects of Corrosion on Zirconium-Based Alloys in Water Reactor Environment, International atomic energy Agency: Vienna, 1990; p. 262. IWGFPT/34.

    Google Scholar 

  73. C.E. Coleman, R.W. Gilbert, G.J.C. Carpenter, and G.C. Weatherly: Precipitation in Zr-2.5 wt% Nb during neutron irradiation. In Phase Stability During Irradiation, J.R. Holland, L.K. Mansur, and D.I. Potter eds.; The Metallurgical Society of AIME: New York, 1981; p. 587.

    Google Scholar 

  74. H.H. Shen, S.M. Peng, X. Xiang, F.N. Naab, K. Sun, and X.T. Zu: Proton irradiation effects on the precipitate in a Zr-1.6Sn-0.6Nb-0.2Fe-0.1Cr alloy. J. Nucl. Mater. 452, 335 (2014).

    Article  CAS  Google Scholar 

  75. M. Griffiths: A review of microstructure evolution in zirconium alloys during irradiation. J. Nucl. Mater. 159, 190 (1988).

    Article  CAS  Google Scholar 

  76. X.T. Zu, K. Sun, M. Atzmon, L.M. Wang, L.P. You, F.R. Wan, J.T. Busby, G.S. Was, and R.B. Adamson: Effect of proton and Ne irradiation on the microstructure of Zircaloy 4. Philos. Mag. 85(4–7), 649 (2005).

    Article  CAS  Google Scholar 

  77. E.M. Francis, A. Harte, P. Frankel, S.J. Haigh, D. Jadernas, J. Romero, L. Hallstadius, and M. Preuss: Iron redistribution in a zirconium alloy after neutron and proton irradiation studied by energy-dispersive X-ray spectroscopy (EDX) using an aberration-corrected (scanning) transmission electron microscope. J. Nucl. Mater. 454, 387 (2014).

    Article  CAS  Google Scholar 

  78. H.R. Higgy and F.H. Hammad: Effect of fast-neutron irradiation on mechanical properties of stainless steels: AISI types 304, 316 and 347. J. Nucl. Mater. 55, 177 (1975).

    Article  CAS  Google Scholar 

  79. M.L. Hamilton, F.A. Garner, G.L. Hankin, R.G. Faulkner, and M.B. Toloczko: Neutron-induced evolution of mechanical properties of 20% cold-worked 316 stainless steel as observed in both miniature tensile and TEM shear punch specimens. In Effects of Radiation on Materials: 19th International Symposium, ASTM STP 1366, M.L. Hamilton, A.S. Kumar, S.T. Rosinski, and M.L. Grossbeck eds.; American Society for Testing and Materials, West Conshohocken, PA, 2000; p. 1003.

    Chapter  Google Scholar 

  80. J.T. Busby, M.C. Hash, and G.S. Was: The relationship between hardness and yield stress in irradiated austenitic and ferritic steels. J. Nucl. Mater. 336, 267 (2005).

    Article  CAS  Google Scholar 

  81. G.S. Was, M. Hash, and G.R. Odette: Proton irradiation of model and commercial pressure vessel steels. Philos. Mag. 85(4–7), 703 (2005).

    Article  CAS  Google Scholar 

  82. G.R. Odette, T. Yamamoto, and D. Klingensmith: A Compilation of Hardening and Microstructural Evolution Data for Ferritic Model Alloys Irradiated in the UCSB IVAR Program, UCSB-NRC-LR-04/2, 2004.

  83. D.E. Alexander, L.E. Rehn, G.R. Odette, G.E. Lucas, D. Klingensmith, and D. Gragg: Understanding the role of defect production in radiation embrittlement of reactor pressure vessels. In Proceedings of the Ninth International Conference on Environmental Degradation of Materials in Nuclear Power Systems—Water Reactors, S.M. Bruemmer, F.P. Ford, and G.S. Was eds.; Minerals Metals & Materials Society: Warrendale, PA, 1999; p. 827.

    Google Scholar 

  84. S. Shimada and M. Nagai: Evaluation of the resistance of irradiated zirconium-liner cladding to iodine-induced stress corrosion cracking. J. Nucl. Mater. 114, 305 (1983).

    Article  CAS  Google Scholar 

  85. K. Farrell, T.S. Byun, and N. Hashimoto: Deformation mode maps for tensile deformation of neutron-irradiated structural alloys. J. Nucl. Mater. 335, 471 (2004).

    Article  CAS  Google Scholar 

  86. Z. Jiao, J.T. Busby, and G.S. Was: Deformation microstructure of proton-irradiated stainless steels. J. Nucl. Mater. 361, 218 (2007).

    Article  CAS  Google Scholar 

  87. Z. Jiao and G.S. Was: Localized deformation, and IASCC initiation in austenitic stainless steels. J. Nucl. Mater. 382, 203 (2008).

    Article  CAS  Google Scholar 

  88. Z. Jiao and G.S. Was: The role of irradiated microstructure in the localized deformation of austenitic stainless steels. J. Nucl. Mater. 407, 34 (2010).

    Article  CAS  Google Scholar 

  89. Z. Jiao and G.S. Was: Impact of localized deformation on IASCC in austenitic stainless steels. J. Nucl. Mater. 408, 246 (2011).

    Article  CAS  Google Scholar 

  90. Z. Jiao, M.D. McMurtrey, and G.S. Was: Strain-induced precipitate dissolution in an irradiated austenitic alloy. Scr. Mater. 65(2), 159 (2011).

    Article  CAS  Google Scholar 

  91. Z. Jiao, G.S. Was, T. Miura, and K. Fukuya: Aspects of ion irradiations to study localized deformation in austenitic stainless steels. J. Nucl. Mater. 425, 328 (2014).

    Article  CAS  Google Scholar 

  92. L. Fournier, A. Serres, Q. Auzoux, D. Leboulch, and G.S. Was: Proton irradiation effect on microstructure, strain localization and iodine-induced stress corrosion cracking in Zircaloy-4. J. Nucl. Mater. 384, 38 (2009).

    Article  CAS  Google Scholar 

  93. F. Onimus, I. Monnet, J.L. Bechade, C. Prioul, and P. Pilvin: A statistical TEM investigation of dislocation channeling mechanism in neutron irradiated zirconium alloys. J. Nucl. Mater. 328, 165 (2004).

    Article  CAS  Google Scholar 

  94. D.O. Northwood, R.W. Gilbert, L.E. Bahen, P.M. Kelly, R.G. Blake, A. Jostsons, P.K. Madden, D. Faulkner, W. Bell, and R.B. Adamson: Characterization of neutron irradiation damage in zirconium alloys—An international “round-robin” experiment. J. Nucl. Mater. 79, 379 (1979).

    Article  CAS  Google Scholar 

  95. R. Scholz and R. Matera: Proton irradiation creep of Inconel 718 at 300°C. J. Nucl. Mater. 283–287, 414 (2000).

    Article  Google Scholar 

  96. J. Baicry, J.P. Mardon, and P. Morize: Effect of irradiation at 588K on mechanical properties and deformation behavior of zirconium alloy strip. In Proceedings of the Seventh International Symposium on Zirconium in the Nuclear Industry, ASTM STP 939, R.B. Adamson and L.F.P. Van Swam eds.; American Society for Testing and Materials: West Conshohocken, PA, 1987; p. 101.

    Google Scholar 

  97. B.H. Sencer, G.S. Was, H. Yuya, Y. Isobe, M. Sagisaka, and F.A. Garner: Cross-sectional TEM and X-ray examination of radiation-induced stress relaxation of peened stainless steel surfaces. J. Nucl. Mater. 336, 314 (2005).

    Article  CAS  Google Scholar 

  98. C. Xu and G.S. Was: Low dose proton irradiated creep of FM steel T91. J. Nucl. Mater. 459, 183 (2015).

    Article  CAS  Google Scholar 

  99. A.A. Campbell, K.B. Campbell, and G.S. Was: Proton irradiation-induced creep of ultra-fine grain graphite. Carbon 60, 410 (2013).

    Article  CAS  Google Scholar 

  100. P. Wang and G.S. Was: Oxidation of Zircaloy-4 during in-situ proton irradiation and corrosion in PWR primary water. J. Mater. Res. DOI: https://doi.org/10.1557/jmr.2014.408.

  101. C.M. Allison: MATPRO—A Library of Materials Properties for Light-Water-Reactor Accident Analysis, NUREG/CR-6150, EGG-2720, U.S. NRC, Washington, DC, Vol. 4, p. 4–203–4–231.

  102. G.S. Was, Z. Jiao, E. Beckett, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, and M. Hackett: Emulation of reactor irradiation damage using ion beams. Scr. Mater. 88, 33 (2014).

    Article  CAS  Google Scholar 

  103. B.H. Sencer, J.R. Kennedy, J.I. Cole, S.A. Maloy, and F.A. Garner: Microstructural analysis of an HT9 fuel assembly duct irradiated in FFTF to 155 dpa at 443°C. J. Nucl. Mater. 393, 235 (2009).

    Article  CAS  Google Scholar 

  104. J.F. Ziegler, M.D. Ziegler, and J.P. Biersak: SRIM–The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818 (2010).

    Article  CAS  Google Scholar 

  105. R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F. Garner: On the use of SRIM for computing radiation damage exposure. Nucl. Instrum. Methods Phys. Res., Sect. B 310, 75 (2013).

    Article  CAS  Google Scholar 

  106. G.S. Was, Z. Jiao, A. Van der ven, S. Buremmer, and D. Edwards: Aging and Embrittlement of High Fluence Stainless Steels, Final Report; NEUP Project CFP-09-767; U.S. DOE, Washington, DC, 2012.

    Google Scholar 

  107. Z. Jiao and G.S. Was: Precipitate behavior in self-ion irradiated stainless steels at high doses. J. Nucl. Mater. 449, 200 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary S. Was.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Was, G.S. Challenges to the use of ion irradiation for emulating reactor irradiation. Journal of Materials Research 30, 1158–1182 (2015). https://doi.org/10.1557/jmr.2015.73

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.73

Navigation