Skip to main content

Advertisement

Log in

Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Recent efforts to characterize the nanoscale structural and chemical modifications induced by energetic ion irradiation in nuclear materials have greatly benefited from the application of synchrotron-based x-ray diffraction (XRD) and x-ray absorption spectroscopy (XAS) techniques. Key to the study of actinide-bearing materials has been the use of small sample volumes, which are particularly advantageous, as the small quantities minimize the level of radiation exposure at the ion-beam and synchrotron user facility. This approach utilizes energetic heavy ions (energy range: 100 MeV–3 GeV) that pass completely through the sample thickness and deposit an almost constant energy per unit length along their trajectory. High energy x-rays (25–65 keV) from intense synchrotron light sources are then used in transmission geometry to analyze ion-induced structural and chemical modifications throughout the ion tracks. We describe in detail the experimental approach for utilizing synchrotron radiation (SR) to study the radiation response of a range of nuclear materials (e.g., ThO2 and Gd2TixZr2− xO7). Also addressed is the use of high-pressure techniques, such as the heatable diamond anvil cell, as a new means to expose irradiated materials to well-controlled high-temperature (up to 1000 °C) and/or high-pressure (up to 50 GPa) conditions. This is particularly useful for characterizing the annealing kinetics of irradiation-induced material modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11

Similar content being viewed by others

References

  1. R.W. Grimes, R.J.M. Konings, and L. Edwards: Greater tolerance for nuclear materials. Nat. Mater. 7, 683–685 (2008).

    Article  CAS  Google Scholar 

  2. V.V. Rondinella and T. Wiss: The high burn-up structure in nuclear fuel. Mater. Today 13, 24–32 (2010).

    Article  CAS  Google Scholar 

  3. D.N. Sah, U.K. Viswanathan, E. Ramadasan, K. Unnikrishnan, and S. Anantharaman: Post irradiation examination of thermal reactor fuels. J. Nucl. Mater. 383, 45–53 (2008).

    Article  CAS  Google Scholar 

  4. T. Fujino, T. Shiratori, N. Sato, K. Fukuda, K. Yamada, and H. Serizawa: Post-irradiation examination of high burnup Mg doped UO2 in comparison with undoped UO2, Mg-Nb doped UO2 and Ti doped UO2. J. Nucl. Mater. 297, 176–205 (2001).

    Article  CAS  Google Scholar 

  5. K. Tanaka, S. Miwa, N. Sekine, H. Yoshimochi, H.i Obayashi, and S. Koyama: Restructuring and redistribution of actinides in Am-MOX fuel during the first 24 h of irradiation. J. Nucl. Mater. 440, 480–488 (2013).

    Article  CAS  Google Scholar 

  6. N. Nitani, K. Kuramoto, T. Yamashita, K. Ichise, K. Ono, and Y. Nihei: Post-irradiation examination on particle dispersed rock-like oxide fuel. J. Nucl. Mater. 352, 365–371 (2006).

    Article  CAS  Google Scholar 

  7. J. Noirot, L. Desgranges, and J. Lamontagne: Detailed characterisations of high burn-up structures in oxide fuels. J. Nucl. Mater. 372, 318–339 (2008).

    Article  CAS  Google Scholar 

  8. W.-Q. Shi, L.-Y. Yuan, C.-Z. Wang, L. Wang, L. Mei, C.-L. Xiao, L. Zhang, Z.-J. Li, Y.-L. Zhao, and Z.-F. Chai: Exploring Actinide Materials Through Synchrotron Radiation Techniques. Adv. Mater. 26, 7807–7848 (2014).

    Article  CAS  Google Scholar 

  9. J. Rothe, S. Butorin, K. Dardenne, M.A. Denecke, B. Kienzler, M. Löble, V. Metz, A. Seibert, M. Steppert, T. Vitova, C. Walther, and H. Geckeis: The INE-Beamline for actinide science at ANKA. Rev. Sci. Instrum. 83, 043105 (2012).

    Article  CAS  Google Scholar 

  10. K. Dardenne, B. Brendebach, M.A. Denecke, X. Liu, J. Rothe, and T. Vitova: New developments at the INE-Beamline for actinide research at ANKA. In 14th International Conference on X-ray Absorption Fine Structure (XAFS14), Camerino, Italy, 2009.

  11. P.L. Solari, S. Schlutig, H. Hermange, and B. Sitaud: MARS, a new beamline for radioactive matter studies at SOLEIL. In 14th International Conference on X-ray Absorption Fine Structure (XAFS14), Camerino, Italy, 2009.

  12. H. Konishi, A. Yokoya, H. Shiwaku, H. Motohashi, T. Makita, Y. Kashihara, S. Hashimoto, T. Harami, T.A. Sasaki, H. Maeta, H. Ohno, H. Maezawa, S. Asaoka, N. Kanaya, K. Ito, N. Usami, and K. Kobayashi: Synchrotron radiation beamline to study radioactive materials at the photon factory. Nucl. Instrum. Methods Phys. Res., Sect. A 372, 322–332 (1996).

    Article  CAS  Google Scholar 

  13. W. Matz, N. Schell, G. Bernhard, F. Prokert, T. Reich, J. Claußner, W. Oehme, R. Schlenk, S. Dienel, H. Funke, F. Eichhorn, M. Betzl, D. Prühl, U. Strauch, G. Hüttig, H. Krug, W. Neumann, V. Brendler, P. Reichel, M.A. Denecke, and H. Nitsche: ROBL—A CRG beamline for radiochemistry and materials research at the ESRF. J. Synchrotron Radiat. 6, 1076–1085 (1999).

    Article  CAS  Google Scholar 

  14. X. Pan, X. Wu, K. Mo, X. Chen, J. Almer, J. Ilavsky, D.R. Haeffner, and J.F. Stubbins: Lattice strain and damage evolution of 9–12%Cr ferritic/martensitic steel during in situ tensile test by X-ray diffraction and small angle scattering. J. Nucl. Mater. 407, 10–15 (2010).

    Article  CAS  Google Scholar 

  15. K. Mo, Z. Zhou, Y. Miao, D. Yun, H.-M. Tung, G. Zhang, W. Chen, J. Almer, and J.F. Stubbins: Synchrotron study on load partitioning between ferrite/martensite and nanoparticles of a 9Cr ODS steel. J. Nucl. Mater. 455, 376–381 (2014).

    Article  CAS  Google Scholar 

  16. L. Wang, M. Li, and J. Almer: In situ characterization of Grade 92 steel during tensile deformation using concurrent high energy X-ray diffraction and small angle X-ray scattering. J. Nucl. Mater. 440, 81–90 (2013).

    Article  CAS  Google Scholar 

  17. G. Kuri, S. Cammelli, C. Degueldre, J. Bertsch, and D. Gavillet: Neutron induced damage in reactor pressure vessel steel: An X-ray absorption fine structure study. J. Nucl. Mater. 385, 312–318 (2009).

    Article  CAS  Google Scholar 

  18. R.S. Daum, Y.S. Chu, and A.T. Motta: Identification and quantification of hydride phases in Zircaloy-4 cladding using synchrotron X-ray diffraction. J. Nucl. Mater. 392, 453–463 (2009).

    Article  CAS  Google Scholar 

  19. A. Couet, A.T. Motta, B. de Gabory, and Z. Cai: Microbeam X-ray absorption near-edge spectroscopy study of the oxidation of Fe and Nb in zirconium alloy oxide layers. J. Nucl. Mater. 452, 614–627 (2014).

    Article  CAS  Google Scholar 

  20. E. Polatidis, P. Frankel, J. Wei, M. Klaus, R.J. Comstock, A. Ambard, S. Lyon, R.A. Cottis, and M. Preuss: Residual stresses and tetragonal phase fraction characterisation of corrosion tested Zircaloy-4 using energy dispersive synchrotron X-ray diffraction. J. Nucl. Mater. 432, 102–112 (2013).

    Article  CAS  Google Scholar 

  21. C. Mieszczynski, G. Kuri, C. Degueldre, M. Martin, J. Bertsch, C.N. Borca, D. Grolimund, Ch. Delafoy, and E. Simoni: Irradiation effects and micro-structural changes in large grain uranium dioxide fuel investigated by micro-beam X-ray diffraction. J. Nucl. Mater. 444, 274–282 (2014).

    Article  CAS  Google Scholar 

  22. C. Degueldre, J. Bertsch, G. Kuri, and M. Martin: Nuclear fuel in generation II and III reactors: Research issues related to high burn-up. Energy Environ. Sci. 4, 1651–1661 (2011).

    Article  CAS  Google Scholar 

  23. C. Degueldre, C. Mieszczynski, C. Borca, D. Grolimund, M. Martin, and J. Bertsch: X-ray fluorescence and absorption analysis of krypton in irradiated nuclear fuel. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 116–122 (2014).

    Article  CAS  Google Scholar 

  24. G.E. Ice and E.D. Specht: Microbeam, timing, and signal-resolved studies of nuclear materials with synchrotron X-ray sources. J. Nucl. Mater. 425, 233–237 (2012).

    Article  CAS  Google Scholar 

  25. G.S. Was and R.S. Averback: 1.07-Radiation Damage Using Ion Beams. In Comprehensive Nuclear Materials, R.J.M. Konings ed.; Elsevier: Oxford, 2012; pp. 195–221.

    Chapter  Google Scholar 

  26. M. Toulemonde, W. Assmann, C. Dufour, A. Meftah, F. Studer, and C. Trautmann: In Ion Beam Science: Solved and Unsolved Problems, P. Sigmund ed.; The Royal Danish Academy of Sciences and Letters: Copenhagen, 2006; pp. 263–292.

  27. J.M. Zhang, M. Lang, R.C. Ewing, R. Devanathan, W.J. Weber, and M. Toulemonde: Nanoscale phase transitions under extreme conditions within an ion track. J. Mater. Res. 25, 1344–1351 (2010).

    Article  CAS  Google Scholar 

  28. W.X. Li, L.M. Wang, M. Lang, C. Trautmann, and R.C. Ewing: Thermal annealing mechanisms of latent fission tracks: Apatite vs. zircon. Earth Planet. Sci. Lett. 302, 227–235 (2011).

    Article  CAS  Google Scholar 

  29. W.X. Li, M. Lang, A.J.W. Gleadow, M. Zdorovets, and R.C. Ewing: Thermal annealing of unetched fission tracks in apatite. Earth Planet. Sci. Lett. 321–322, 121–127 (2012).

    Article  CAS  Google Scholar 

  30. W.X. Li, P. Kluth, D. Schauries, M.D. Rodriguez, M. Lang, F.X. Zhang, M. Zdorovets, C. Trautmann, and R.C. Ewing: Effect of orientation on ion track formation in apatite and zircon. Am. Mineral. 99, 1127–1132 (2014).

    Article  Google Scholar 

  31. B. Afra, M. Lang, M.D. Rodriguez, J.M. Zhang, R. Giulian, N. Kirby, R.C. Ewing, C. Trautmann, M. Toulemonde, and P. Kluth: Annealing kinetics of latent particle tracks in Durango apatite. Phys. Rev. B 83, 064116 (2011).

    Article  CAS  Google Scholar 

  32. D. Schauries, B. Afra, T. Bierschenk, M. Lang, M.D. Rodriguez, C. Trautmann, W. Li, R.C. Ewing, and P. Kluth: The shape of ion tracks in natural apatite. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 117–120 (2014).

    Article  CAS  Google Scholar 

  33. M.D. Rodriguez, W.X. Li, F. Chen, C. Trautmann, T. Bierschenk, B. Afra, D. Schauries, R.C. Ewing, S.T. Mudie, and P. Kluth: SAXS and TEM investigation of ion tracks in neodymium-doped yttrium aluminium garnet. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 150–153 (2014).

    Article  CAS  Google Scholar 

  34. S. Hémon, C. Dufour, A. Berthelot, F. Gourbilleau, E. Paumier, and S. Bégin-Collin: Structural transformation in two yttrium oxide powders irradiated with swift molybdenum ions. Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 339–344 (2000).

    Article  Google Scholar 

  35. A. Benyagoub: Mechanism of the monoclinic-to-tetragonal phase transition induced in zirconia and hafnia by swift heavy ions. Phys. Rev. B 72, 094114 (2005).

    Article  CAS  Google Scholar 

  36. C. Grygiel, H. Lebius, S. Bouffard, A. Quentin, J.M. Ramillon, T. Madi, S. Guillous, T. Been, P. Guinement, D. Lelièvre, and I. Monnet: Online in situ X-ray diffraction setup for structural modification studies during swift heavy ion irradiation. Rev. Sci. Instrum. 83, 013902 (2012).

    Article  CAS  Google Scholar 

  37. M. Lang, F.X. Zhang, W.X. Li, D. Severin, M. Bender, S. Klaumünzer, C. Trautmann, and R.C. Ewing: Swift heavy ion-induced amorphization of CaZrO3 perovskite. Nucl. Instrum. Methods Phys. Res., Sect. B 286, 271–276 (2012).

    Article  CAS  Google Scholar 

  38. F. Studer, Ch. Houpert, M. Toulemonde, and E. Dartyges: Local environment of iron in heavy ion-irradiated amorphous magnetic oxides by Mössbauer and X-ray absorption spectroscopy. J. Solid State Chem. 91, 238–249 (1991).

    Article  CAS  Google Scholar 

  39. H. Ohno, A. Iwase, D. Matsumura, Y. Nishihata, J. Mizuki, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, and M. Kinoshita: Study on effects of swift heavy ion irradiation in cerium oxide using synchrotron radiation X-ray absorption spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 266, 3013–3017 (2008).

    Article  CAS  Google Scholar 

  40. A. Iwase, H. Ohno, N. Ishikawa, Y. Baba, N. Hirao, T. Sonoda, and M. Kinoshita: Study on the behavior of oxygen atoms in swift heavy ion irradiated CeO2 by means of synchrotron radiation X-ray photoelectron spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 267, 969–972 (2009).

    Article  CAS  Google Scholar 

  41. N. Ishikawa, T. Sonoda, Y. Okamoto, T. Sawabe, K. Takegahara, S. Kosugi, and A. Iwase: X-ray study of radiation damage in UO2 irradiated with high-energy heavy ions. J. Nucl. Mater. 419, 392–396 (2011).

    Article  CAS  Google Scholar 

  42. Y. Tahara, K. Shimizu, N. Ishikawa, Y. Okamoto, F. Hori, T. Matsui, and A. Iwase: Study on effects of energetic ion irradiation in Gd2O3-doped CeO2 by means of synchrotron radiation X-ray spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 53–57 (2012).

    Article  CAS  Google Scholar 

  43. M. Lang, F.X. Zhang, J.M. Zhang, J.W. Wang, B. Schuster, C. Trautmann, R. Neumann, U. Becker, and R.C. Ewing: Nanoscale manipulation of the properties of solids at high pressure with relativistic heavy ions. Nat. Mater. 8, 793–797 (2009).

    Article  CAS  Google Scholar 

  44. M. Lang, F.X. Zhang, J. Lian, C. Trautmann, R. Neumann, and R.C. Ewing: Combined high pressure and heavy-ion irradiation: A novel approach. J. Synchrotron Radiat. 16, 773–777 (2009).

    Article  CAS  Google Scholar 

  45. M. Lang, F.X. Zhang, J.M. Zhang, C.L. Tracy, A.B. Cusick, J. VonEhr, Z.Q. Chen, C. Trautmann, and R.C. Ewing: Swift heavy ion-induced phase transformation in Gd2O3. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 212–125 (2014).

    Article  CAS  Google Scholar 

  46. J.F. Ziegler, M.D. Ziegler, and J.P. Biersack: SRIM—The stopping and range of ions in matter (2010). Nucl. Instrum. Methods Phys. Res., Sect. B 268, 1818–1823 (2010).

    Article  CAS  Google Scholar 

  47. E. Luther, C. Necker, B. Mihaila, P. Papin, and D. Guidry: Microstructural characterization of uranium oxide. Trans. Am. Nucl. Soc. 104, 257 (2011).

    Google Scholar 

  48. A.P. Hammersley, S.O. Svensson, M. Hanfland, A.N. Fitch, and D. Häussermann: Two-dimensional detector software: From real detector to idealized image or two-theta scan. High Pressure Res. 14, 235 (1996).

    Article  Google Scholar 

  49. G. Williamson and W. Hall: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22–31 (1953).

    Article  CAS  Google Scholar 

  50. C.L. Tracy, J.M. Pray, M. Lang, F.X. Zhang, D. Popov, C.Y. Park, C. Trautmann, M. Bender, D. Severin, V.A. Skuratov, and R.C. Ewing: Defect accumulation in ThO2 irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 326, 169–173 (2014).

    Article  CAS  Google Scholar 

  51. W.J. Weber: Alpha-irradiation damage in CeO2, UO2 and PuO2. Radiat. Eff. 83, 145–156 (1984).

    Article  CAS  Google Scholar 

  52. M. Lang, F.X. Zhang, J. Lian, C. Trautmann, Z. Wang, and R.C. Ewing: Structural modifications of Gd2Zr2-xTixO7 pyrochlore induced by swift heavy ions: Disordering and amorphization. J. Mater. Res. 24, 1322 (2009).

    Article  CAS  Google Scholar 

  53. C.L. Tracy, M. Lang, J.M. Pray, D. Popov, C.Y. Park, C. Trautmann, and R.C. Ewing: Redox response of actinide materials to highly-ionizing radiation. Nat. Commun. 6, 6311 (2015).

    Article  CAS  Google Scholar 

  54. K.B. Helean, A. Navrotsky, E.R. Vance, M.L. Carter, B. Ebbinghaus, O. Krikorian, J. Lian, L.M. Wang, and J.G. Catalano: Enthalpies of formation of Ce-pyrochlore, Ca0.93Ce1.00Ti2.035O7.00, U-pyrochlore, Ca1.46U4+0.23U6+0.46Ti1.85O7.00 and Gd-pyrochlore, Gd2Ti2O7: Three materials relevant to the proposed waste form for excess weapons plutonium. J. Nucl. Mater. 303, 226–239 (2002).

    Article  CAS  Google Scholar 

  55. G. Sattonnay, S. Moll, L. Thomé, C. Decorse, C. Legros, P. Simon, J. Jagielski, J. Jozwik, and I. Monnet: Phase transformations induced by high electronic excitation in ion irradiated Gd2(ZrxTi1−x)2O7 pyrochlores. J. Appl. Phys. 108, 103512 (2010).

    Article  CAS  Google Scholar 

  56. W.J. Weber: Models and mechanisms of irradiation-induced amorphization in ceramics. Nucl. Instrum. Methods Phys. Res., Sect. B 166–167, 98–106 (2000).

    Article  Google Scholar 

  57. M. Lang, M. Toulemonde, J.M. Zhang, F.X. Zhang, C.L. Tracy, J. Lian, Z.W. Wang, W.J. Weber, D. Severin, M. Bender, C. Trautmann, and R.C. Ewing: Swift heavy ion track formation in Gd2Zr2- xTixO7 pyrochlore: Effect of electronic energy Loss. Nucl. Instrum. Methods Phys. Res., Sect. B 336, 102–115 (2014).

    Article  CAS  Google Scholar 

  58. B.D. Begg, N.J. Hess, D.E. McCready, S. Thevuthasan, and W.J. Weber: Heavy-ion irradiation effects in Gd2(Ti2-xZrx)O7 pyrochlores. J. Nucl. Mater. 289, 188 (2001).

    Article  CAS  Google Scholar 

  59. S. Hémon, V. Chailley, E. Dooryhée, C. Dufour, F. Gourbilleau, F. Levesque, and E. Paumier: Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 122, 563 (1997).

    Article  Google Scholar 

  60. S. Hémon, Ch. Dufour, F. Gourbilleau, E. Paumier, E. Dooryhée, and S. Bégin-Colin: Influence of the grain size: Yttrium oxide irradiated with swift heavy ions. Nucl. Instrum. Methods Phys. Res., Sect. B 146, 443–448 (1998).

    Article  Google Scholar 

  61. M. Tang, P. Lu, J.A. Valdez, and K.E. Sickafus: Ion-irradiation-induced phase transformation in rare earth sesquioxides (Dy2O3, Er2O3, Lu2O3). J. Appl. Phys. 99, 063514 (2006).

    Article  CAS  Google Scholar 

  62. R.I. Palomares, C.L. Tracy, F.X. Zhang, D. Popov, C.Y. Park, C. Trautmann, R. Ewing, and M. Lang: In situ defect annealing of swift heavy ion-irradiated CeO2 and ThO2 in a hydrothermal diamond anvil cell: A synchrotron X-ray diffraction study. J. Crystallogr. (2015, submitted).

  63. W.A. Bassett: High pressure-temperature aqueous systems in the hydrothermal diamond anvil cell (HDAC). Eur. J. Mineral. 15, 773–780 (2003).

    Article  CAS  Google Scholar 

  64. V.B. Prakapenka, A. Kubo, A. Kuznetsov, A. Laskin, O. Shkurikhin, P. Dera, M.L. Rivers, and S.R. Sutton: Advanced flat top laser heating system for high pressure research at GSECARS: Application to the melting behavior of germanium. High Pressure Res. 28, 225–235 (2008).

    Article  CAS  Google Scholar 

  65. H-K. Mao, J. Xu, and P.M. Bell: Calibration of the ruby pressure gauge to 800 kbar under quasihydrostatic conditions. J. Geophys. Res.: Solid Earth 91, 4673–4676 (1986).

    Article  CAS  Google Scholar 

  66. U.A. Glasmacher, M. Lang, H. Keppler, F. Langenhorst, R. Neumann, D. Schardt, C. Trautmann, and G.A. Wagner: Phase transitions in solids stimulated by simultaneous exposure to high pressure and relativistic heavy ions. Phys. Rev. Lett. 96, 195701 (2006).

    Article  CAS  Google Scholar 

  67. B. Schuster, F. Fujara, B. Merk, R. Neumann, T. Seidl, and C. Trautmann: Response behavior of ZrO2 under swift heavy ion irradiation with and without external pressure. Nucl. Instrum. Methods Phys. Res., Sect. B 277, 42–52 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported as part of the Materials Science of Actinides, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Award #DE-SC0001089. Portions of this work were performed at HPCAT (Sector 16), Advanced Photon Source (APS), Argonne National Laboratory. HPCAT operations are supported by DOE-NNSA under Award #DE-NA0001974 and DOE-BES under Award #DE-FG02-99ER45775, with partial instrumentation funding by NSF. HPCAT beamtime was granted by the Carnegie/DOE Alliance Center (CDAC). GeoSoilEnviroCARS is supported by the National Science Foundation — Earth Sciences (EAR-1128799) and Department of Energy — GeoSciences (DE-FG02-94ER14466). This research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maik Lang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, M., Tracy, C.L., Palomares, R.I. et al. Characterization of ion-induced radiation effects in nuclear materials using synchrotron x-ray techniques. Journal of Materials Research 30, 1366–1379 (2015). https://doi.org/10.1557/jmr.2015.6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2015.6

Navigation